IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i4p464-478.html
   My bibliography  Save this article

Economic design of a circular consecutive-k-out-of-n:F system with (k-1)-step Markov dependence

Author

Listed:
  • Yun, Won-Young
  • Kim, Gui-Rae
  • Yamamoto, Hisashi

Abstract

A circular consecutive-k-out-of-n:F system consists of n components arranged along a circular path. The system fails if and only if at least k consecutive components in the system fail. The system reliability, the expected system life, and the expected number of failures are obtained under the assumption that the failure rate of a component depends on the number of consecutive failed components that follow it. A procedure to find the optimal k and a simulation procedure to search the near-optimal k are proposed with illustrative numerical examples. An expected cost per unit time is considered as the objective function to be minimized.

Suggested Citation

  • Yun, Won-Young & Kim, Gui-Rae & Yamamoto, Hisashi, 2007. "Economic design of a circular consecutive-k-out-of-n:F system with (k-1)-step Markov dependence," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 464-478.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:4:p:464-478
    DOI: 10.1016/j.ress.2005.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183200600010X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2005.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, Yeh & Ng, Hon Keung Tony, 2001. "A general model for consecutive-k-out-of-n: F repairable system with exponential distribution and (k-1)-step Markov dependence," European Journal of Operational Research, Elsevier, vol. 129(3), pages 663-682, March.
    2. D. Z. Du & F. K. Hwang, 1986. "Optimal Consecutive-2-Out-of- n Systems," Mathematics of Operations Research, INFORMS, vol. 11(1), pages 187-191, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Won Young Yun & Alfonsus Julanto Endharta, 2016. "A preventive replacement policy based on system critical condition," Journal of Risk and Reliability, , vol. 230(1), pages 93-100, February.
    2. Serkan Eryilmaz & Cihangir Kan & Fatih Akici, 2009. "Consecutive k‐within‐m‐out‐of‐n:F system with exchangeable components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 503-510, September.
    3. Villén-Altamirano, José, 2010. "RESTART simulation of non-Markov consecutive-k-out-of-n: F repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 247-254.
    4. Zhu, Xiaoyan & Boushaba, Mahmoud & Coit, David W. & Benyahia, Azzeddine, 2017. "Reliability and importance measures for m-consecutive-k, l-out-of-n system with non-homogeneous Markov-dependent components," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 1-9.
    5. Levitin, Gregory, 2011. "Linear m-gap-consecutive k-out-of-r-from-n:F systems," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 292-298.
    6. Wang, Wei & Fu, Yongnian & Si, Peng & Lin, Mingqiang, 2020. "Reliability analysis of circular multi-state sliding window system with sequential demands," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Endharta, Alfonsus Julanto & Yun, Won Young & Ko, Young Myoung, 2018. "Reliability evaluation of circular k-out-of-n: G balanced systems through minimal path sets," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 226-236.
    8. Wang, Wei & Fang, Chao & Liu, Shan & Xiang, Yisha, 2021. "Reliability analysis and optimization of multi-state sliding window system with sequential demands and time constraints," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Eryılmaz, Serkan, 2009. "Reliability properties of consecutive k-out-of-n systems of arbitrarily dependent components," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 350-356.
    10. Wang, Wei & Fang, Chao & Wang, Yan & Li, Jin, 2022. "Reliability Modeling and Optimization of Circular Multi-State Sliding Time Window System with Sequential Demands," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Zhiqiang & Si, Shubin & Sun, Shudong & Li, Caitao, 2016. "Optimization of linear consecutive-k-out-of-n system with a Birnbaum importance-based genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 248-258.
    2. Haque, Lani & Armstrong, Michael J., 2007. "A survey of the machine interference problem," European Journal of Operational Research, Elsevier, vol. 179(2), pages 469-482, June.
    3. S Eryilmaz, 2010. "Review of recent advances in reliability of consecutive k-out-of-n and related systems," Journal of Risk and Reliability, , vol. 224(3), pages 225-237, September.
    4. Eryılmaz, Serkan, 2009. "Reliability properties of consecutive k-out-of-n systems of arbitrarily dependent components," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 350-356.
    5. Villén-Altamirano, José, 2010. "RESTART simulation of non-Markov consecutive-k-out-of-n: F repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 247-254.
    6. Cheng, Yao & Elsayed, Elsayed A., 2018. "Reliability modeling and optimization of operational use of one-shot units," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 27-36.
    7. Ruiz-Castro, Juan Eloy & Li, Quan-Lin, 2011. "Algorithm for a general discrete k-out-of-n: G system subject to several types of failure with an indefinite number of repairpersons," European Journal of Operational Research, Elsevier, vol. 211(1), pages 97-111, May.
    8. Xiao, Gang & Li, Zhizhong & Li, Ting, 2007. "Dependability estimation for non-Markov consecutive-k-out-of-n: F repairable systems by fast simulation," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 293-299.
    9. Hsun-Wen Chang & R.J. Chen & F.K. Hwang, 2002. "The Structural Birnbaum Importance of Consecutive-k Systems," Journal of Combinatorial Optimization, Springer, vol. 6(2), pages 183-197, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:4:p:464-478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.