IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002261.html
   My bibliography  Save this article

Safety Integrity Level (SIL) evaluation of safety instrumented systems considering competing failure modes and subsystem priorities

Author

Listed:
  • Cheraghi, Morteza
  • Taghipour, Sharareh

Abstract

Safety Integrity Level (SIL) is a crucial measure of the safety performance of Safety Instrumented Systems (SISs), reflecting their ability to reduce risk. However, SIL analysis has often overlooked the impact of competing failure modes and subsystem priorities within SISs. This paper introduces a novel probabilistic model for evaluating the SIL of safety functions that incorporates these critical aspects. The model calculates the time-dependent Probability of (dangerous) Failure on Demand (PFD) and Probability of Failing Safely (PFS) at the component, subsystem, and system levels. The average PFD (PFDavg) and SIL are calculated considering both planned and unplanned proof tests. The proposed model is validated through Monte Carlo simulations and applied to a safety system designed to protect a process vessel from high-pressure hazards. A comparative analysis with existing models demonstrates that competing failure modes and subsystem priorities significantly influence PFD, PFS, PFDavg, and consequently SIL, especially in systems with longer proof test intervals and higher Safe Failure Fractions (SFFs).

Suggested Citation

  • Cheraghi, Morteza & Taghipour, Sharareh, 2025. "Safety Integrity Level (SIL) evaluation of safety instrumented systems considering competing failure modes and subsystem priorities," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002261
    DOI: 10.1016/j.ress.2025.111025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Redutskiy, Yury & Camitz-Leidland, Cecilie M. & Vysochyna, Anastasiia & Anderson, Kristanna T. & Balycheva, Marina, 2021. "Safety systems for the oil and gas industrial facilities: Design, maintenance policy choice, and crew scheduling," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Xie, Lin & Lundteigen, Mary Ann & Liu, Yiliu, 2021. "Performance analysis of safety instrumented systems against cascading failures during prolonged demands," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Ding, Long & Wang, Hong & Jiang, Jin & Xu, Aidong, 2017. "SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 170-187.
    5. Innal, Fares & Dutuit, Yves & Chebila, Mourad, 2015. "Safety and operational integrity evaluation and design optimization of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 32-50.
    6. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    7. Wang, Jingjing & Zheng, Rui & Lin, Tianran, 2022. "Maintenance modeling for balanced systems subject to two competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Hao Peng & Qianmei Feng & David Coit, 2010. "Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes," IISE Transactions, Taylor & Francis Journals, vol. 43(1), pages 12-22.
    9. Rodrigues, Augusto J.S. & Cavalcante, Cristiano A.V. & Lee, Chi-Guhn, 2024. "A general inspection and replacement policy for protection systems subject to shocks with state dependent effect," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    10. Huang, Ding-Hsiang, 2024. "Network reliability of a stochastic flow network by wrapping linear programming models into a Monte-Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    11. Abba, Badamasi & Wu, Jinbiao & Muhammad, Mustapha, 2024. "A robust multi-risk model and its reliability relevance: A Bayes study with Hamiltonian Monte Carlo methodology," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Wang, Jingjing & Liu, Huimin & Lin, Tianran, 2023. "Optimal rearrangement and preventive maintenance policies for heterogeneous balanced systems with three failure modes," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    13. Fu, Jianmin & Li, Honghao & Chi, Yajuan & Zhen, Jia & Xu, Xiangfeng, 2021. "nSIL Evaluation and Sensitivity Study of Diverse Redundant Structure," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    14. Wu, Bei & Ding, Dong, 2022. "A gamma process based model for systems subject to multiple dependent competing failure processes under Markovian environments," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Liu, Hengchang & Li, Bo & Yao, Fengming & Hu, Gexi & Xie, Lei, 2024. "Maintenance optimization of multi-unit balanced systems using deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    16. Shao, Xiaoyan & Cai, Baoping & Gao, Lei & Zhang, Yanping & Yang, Chao & Gao, Chuntan, 2024. "Data-model-linked remaining useful life prediction method with small sample data: A case of subsea valve," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    17. Noureddine Asklou & Rachid Noureddine, 2020. "Effects of proof tests on the safety performance of safety-instrumented systems," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 34(3), pages 396-408.
    18. Cai, Baoping & Liu, Yu & Fan, Qian, 2016. "A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 105-115.
    19. Cai, Baoping & Li, Wenchao & Liu, Yiliu & Shao, Xiaoyan & Zhang, Yanping & Zhao, Yi & Liu, Zengkai & Ji, Renjie & Liu, Yonghong, 2021. "Modeling for evaluation of safety instrumented systems with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Lu, Lixuan & Lewis, Gregory, 2008. "Configuration determination for k-out-of-n partially redundant systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1594-1604.
    21. Cheraghi, Morteza & Taghipour, Sharareh, 2024. "A mathematical optimization model for determining safety integrity levels in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    22. Srivastav, Himanshu & Barros, Anne & Lundteigen, Mary Ann, 2020. "Modelling framework for performance analysis of SIS subject to degradation due to proof tests," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheraghi, Morteza & Taghipour, Sharareh, 2024. "A mathematical optimization model for determining safety integrity levels in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    3. Xie, Lin & Lundteigen, Mary Ann & Liu, Yiliu, 2021. "Performance analysis of safety instrumented systems against cascading failures during prolonged demands," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Cai, Baoping & Li, Wenchao & Liu, Yiliu & Shao, Xiaoyan & Zhang, Yanping & Zhao, Yi & Liu, Zengkai & Ji, Renjie & Liu, Yonghong, 2021. "Modeling for evaluation of safety instrumented systems with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Zheng, Rui & Fang, Haojun & Song, Yanying, 2024. "A condition-based maintenance policy for a two-component balanced system with dependent degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    6. Samia Daas & Fares Innal, 2024. "Reliability assessment of emergency safety barriers based on an intuitionistic fuzzy sets aggregation procedure and subjective safety analysis: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 4143-4161, August.
    7. Redutskiy Yury & Balycheva Marina & Dybdahl Hendrik, 2022. "Employee scheduling and maintenance planning for safety systems at the remotely located oil and gas industrial facilities," Engineering Management in Production and Services, Sciendo, vol. 14(4), pages 1-21, December.
    8. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    9. Chen, Ying & Wang, Yanfang & Li, Shumin & Kang, Rui, 2023. "Hybrid uncertainty quantification of dependent competing failure process with chance theory," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Chai, Xiaofei & Kilic, Onur A. & Veldman, Jasper & Teunter, Ruud H. & Zhao, Xian, 2024. "Condition-based reallocation and maintenance for a 1-out-of-2 pairs balanced system," European Journal of Operational Research, Elsevier, vol. 318(2), pages 618-628.
    11. Redutskiy, Yury & Camitz-Leidland, Cecilie M. & Vysochyna, Anastasiia & Anderson, Kristanna T. & Balycheva, Marina, 2021. "Safety systems for the oil and gas industrial facilities: Design, maintenance policy choice, and crew scheduling," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    12. Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    13. Mai, Yuxi & Xue, Jianwu & Wu, Bei, 2023. "Optimal maintenance policy for systems with environment-modulated degradation and random shocks considering imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    14. Khalil, Y.F., 2019. "New statistical formulations for determination of qualification test plans of safety instrumented systems (SIS) subject to low/high operational demands," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 196-209.
    15. Wu, Bei & Zhang, Yamei & Zhao, Songzheng, 2023. "Modeling coupled effects of dynamic environments and zoned shocks on systems under dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Fu, Jianmin & Li, Honghao & Chi, Yajuan & Zhen, Jia & Xu, Xiangfeng, 2021. "nSIL Evaluation and Sensitivity Study of Diverse Redundant Structure," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    18. Yuan, Shuaiqi & Cai, Jitao & Reniers, Genserik & Yang, Ming & Chen, Chao & Wu, Jiansong, 2022. "Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    19. Liang, Qingzhu & Yang, Yinghao & Zhang, Hang & Peng, Changhong & Lu, Jianchao, 2022. "Analysis of simplification in Markov state-based models for reliability assessment of complex safety systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Qin, Xiangyu & Che, Ada & Wu, Bei, 2024. "Modeling coupling impacts of self-healing mechanisms and dynamic environments on systems subject to dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.