IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023006038.html
   My bibliography  Save this article

Modelling standoff distances to prevent escalation in shooting attacks to tanks storing hazardous materials

Author

Listed:
  • Iaiani, Matteo
  • Sorichetti, Riccardo
  • Tugnoli, Alessandro
  • Cozzani, Valerio

Abstract

Industrial equipment storing hazardous substances can be the target of deliberate malicious attacks causing escalation scenarios involving the release of flammable and/or toxic material with severe consequences on people, assets, and the environment. In the present study, a novel modelling approach was developed to assess the baseline values of standoff distances for atmospheric and pressurized storage equipment considering a set of standardized handgun and rifle projectiles not specific for military uses. The calculation of standoff distances is based on specific models for projectile perforation and flight. The range of standoff distances varies depending on the type of firearm used. Standoff distances resulted in the range of less than 10 m in case of handgun projectiles and up to 1130 m in case of hard-core rifle projectiles. Important differences in standoff distances were found for atmospheric and pressurized tanks. The effect of the initial offset angle of the shooter on the standoff distance was assessed by a Monte Carlo analysis based on credible offset angles for handgun and rifle projectiles. A case study demonstrates the importance of the results to improve chemical site security with respect to attack detection, emergency response, and mitigation actions aimed at preventing escalation scenarios.

Suggested Citation

  • Iaiani, Matteo & Sorichetti, Riccardo & Tugnoli, Alessandro & Cozzani, Valerio, 2024. "Modelling standoff distances to prevent escalation in shooting attacks to tanks storing hazardous materials," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023006038
    DOI: 10.1016/j.ress.2023.109689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rezazadeh, Amirali & Talarico, Luca & Reniers, Genserik & Cozzani, Valerio & Zhang, Laobing, 2019. "Applying game theory for securing oil and gas pipelines against terrorism," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. IAIANI, Matteo & TUGNOLI, Alessandro & BONVICINI, Sarah & COZZANI, Valerio, 2021. "Analysis of Cybersecurity-related Incidents in the Process Industry," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Kumar, Suman & Saxena, Sanchit & Sharma, Hrishikesh & Gangolu, Jaswanth & Prabhu, T. Ajeeth, 2023. "Development of design guidelines using probabilistic framework for the development of smart thickening fluid based ultra resistant adaptive kinematic soft human armor (SURAKSHA)," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Dong, Mingxin & Zhang, Zhen & Liu, Yi & Zhao, Dong Feng & Meng, Yifei & Shi, Jihao, 2023. "Playing Bayesian Stackelberg game model for optimizing the vulnerability level of security incident system in petrochemical plants," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Qin, Hao & Stewart, Mark G., 2021. "Casualty Risks Induced by Primary Fragmentation Hazards from High-explosive munitions," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Matteini, Anita & Argenti, Francesca & Salzano, Ernesto & Cozzani, Valerio, 2019. "A comparative analysis of security risk assessment methodologies for the chemical industry," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Iaiani, Matteo & Casson Moreno, Valeria & Reniers, Genserik & Tugnoli, Alessandro & Cozzani, Valerio, 2021. "Analysis of events involving the intentional release of hazardous substances from industrial facilities," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Guikema, Seth D. & Aven, Terje, 2010. "Assessing risk from intelligent attacks: A perspective on approaches," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 478-483.
    9. Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio & Salzano, Ernesto, 2015. "Vulnerability of industrial facilities to attacks with improvised explosive devices aimed at triggering domino scenarios," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 53-62.
    10. Casson Moreno, Valeria & Marroni, Giulia & Landucci, Gabriele, 2022. "Probabilistic assessment aimed at the evaluation of escalating scenarios in process facilities combining safety and security barriers," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. van Staalduinen, Mark Adrian & Khan, Faisal & Gadag, Veeresh & Reniers, Genserik, 2017. "Functional quantitative security risk analysis (QSRA) to assist in protecting critical process infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 23-34.
    12. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2019. "Integrating safety and security resources to protect chemical industrial parks from man-made domino effects: A dynamic graph approach," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Khakzad, Nima & Reniers, Genserik, 2019. "Low-capacity utilization of process plants: A cost-robust approach to tackle man-made domino effects," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Feng, Qilin & Cai, Hao & Chen, Zhilong, 2019. "Using game theory to optimize the allocation of defensive resources on a city scale to protect chemical facilities against multiple types of attackers," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Argenti, Francesca & Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio, 2018. "Vulnerability assessment of chemical facilities to intentional attacks based on Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 515-530.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Mingxin & Zhang, Zhen & Liu, Yi & Zhao, Dong Feng & Meng, Yifei & Shi, Jihao, 2023. "Playing Bayesian Stackelberg game model for optimizing the vulnerability level of security incident system in petrochemical plants," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Casson Moreno, Valeria & Marroni, Giulia & Landucci, Gabriele, 2022. "Probabilistic assessment aimed at the evaluation of escalating scenarios in process facilities combining safety and security barriers," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Zhang, Laobing & Reniers, Genserik & Chen, Bin & Qiu, Xiaogang, 2019. "CCP game: A game theoretical model for improving the scheduling of chemical cluster patrolling," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Li, Xiaofeng & Chen, Guohua & Amyotte, Paul & Khan, Faisal & Alauddin, Mohammad, 2023. "Vulnerability assessment of storage tanks exposed to simultaneous fire and explosion hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Iaiani, Matteo & Tugnoli, Alessandro & Macini, Paolo & Cozzani, Valerio, 2021. "Outage and asset damage triggered by malicious manipulation of the control system in process plants," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. IAIANI, Matteo & TUGNOLI, Alessandro & BONVICINI, Sarah & COZZANI, Valerio, 2021. "Analysis of Cybersecurity-related Incidents in the Process Industry," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    9. Rongchen Zhu & Xiaofeng Hu & Xin Li & Han Ye & Nan Jia, 2020. "Modeling and Risk Analysis of Chemical Terrorist Attacks: A Bayesian Network Method," IJERPH, MDPI, vol. 17(6), pages 1-23, March.
    10. Ding, Long & Khan, Faisal & Ji, Jie, 2022. "A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    12. Lan, Meng & Gardoni, Paolo & Weng, Wenguo & Shen, Kaixin & He, Zhichao & Pan, Rongliang, 2024. "Modeling the evolution of industrial accidents triggered by natural disasters using dynamic graphs: A case study of typhoon-induced domino accidents in storage tank areas," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Iaiani, Matteo & Casson Moreno, Valeria & Reniers, Genserik & Tugnoli, Alessandro & Cozzani, Valerio, 2021. "Analysis of events involving the intentional release of hazardous substances from industrial facilities," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Wu, Jiansong & Zhang, Linlin & Bai, Yiping & Reniers, Genserik, 2022. "A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Witold Torbacki, 2021. "A Hybrid MCDM Model Combining DANP and PROMETHEE II Methods for the Assessment of Cybersecurity in Industry 4.0," Sustainability, MDPI, vol. 13(16), pages 1-35, August.
    17. Wang, Fan & Li, Heng & Dong, Chao & Ding, Lieyun, 2019. "Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Roshanak Nateghi & Seth D. Guikema & Yue (Grace) Wu & C. Bayan Bruss, 2016. "Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 4-15, January.
    19. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    20. Li, Qing & Li, Mingchu & Tian, Yuan & Gan, Jianyuan, 2023. "A risk-averse tri-level stochastic model for locating and recovering facilities against attacks in an uncertain environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023006038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.