IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v219y2022ics0951832021007043.html
   My bibliography  Save this article

Network reliability evaluation for multi-state computing networks considering demand as the non-integer type

Author

Listed:
  • Huang, Cheng-Fu
  • Huang, Ding-Hsiang
  • Lin, Yi-Kuei

Abstract

A multi-state computing network (MSCN) consists of multi-state edges such that the performance levels of the MSCN might differ. Network reliability is concerned with the probability that the predetermined demand from multiple sources can be successfully transmitted through the network. One of the major methods for efficiently calculating network reliability is to generate all minimal capacity vectors (MCVs), which represents the minimal capacity required for each edge. Every MCV is transformed from the flow vectors satisfying predetermined demands based on the minimal paths (MPs). In general, the amount flows were set as integers for flow vector generation in previous studies. In fact, the amount of data might be the non-integer type (such as 2.4Gbps) in the practical data transmission. An algorithm with a new approach for flow vector generation is developed to efficiently deal with demand as the non-integer type with any transmission unit such that the search spaces of the flows are stable. The experimental results of numerical examples and a practical case show that the proposed algorithm is more effective and efficient than the approaches in the literature.

Suggested Citation

  • Huang, Cheng-Fu & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2022. "Network reliability evaluation for multi-state computing networks considering demand as the non-integer type," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021007043
    DOI: 10.1016/j.ress.2021.108226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021007043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Yi-Feng, 2021. "Performance measure of a multi-state flow network under reliability and maintenance cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Schäfer, Lukas & García, Sergio & Srithammavanh, Vassili, 2018. "Simplification of inclusion–exclusion on intersections of unions with application to network systems reliability," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 23-33.
    3. Yeh, Wei-Chang & Hao, Zhifeng & Forghani-elahabad, Majid & Wang, Gai-Ge & Lin, Yih-Lon, 2021. "Novel Binary-Addition Tree Algorithm for Reliability Evaluation of Acyclic Multistate Information Networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining, 2021. "An improved bounding algorithm for approximating multistate network reliability based on state-space decomposition method," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    5. Guanghan Bai & Zhigang Tian & Ming J. Zuo, 2018. "Reliability evaluation of multistate networks: An improved algorithm using state-space decomposition and experimental comparison," IISE Transactions, Taylor & Francis Journals, vol. 50(5), pages 407-418, May.
    6. Cheng-Fu Huang, 2019. "Evaluation of system reliability for a stochastic delivery-flow distribution network with inventory," Annals of Operations Research, Springer, vol. 277(1), pages 33-45, June.
    7. Esha Datta & Neeraj Kumar Goyal, 2017. "Sum of disjoint product approach for reliability evaluation of stochastic flow networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1734-1749, November.
    8. Yeh, Cheng-Ta, 2020. "A hybrid approach to solve a bi-objective optimization problem of a capacitated-flow network with a time factor," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Yeh, Cheng-Ta, 2019. "An improved NSGA2 to solve a bi-objective optimization problem of multi-state electronic transaction network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Chen, Shin-Guang & Lin, Yi-Kuei, 2020. "A permutation-and-backtrack approach for reliability evaluation in multistate information networks," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    11. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    12. Niu, Yi-Feng & Wan, Xiao-Yu & Xu, Xiu-Zhen & Ding, Dong, 2020. "Finding all multi-state minimal paths of a multi-state flow network via feasible circulations," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Yi-Feng & Zhao, Xia & Xu, Xiu-Zhen & Zhang, Shi-Yun, 2023. "Reliability assessment of a stochastic-flow distribution network with carbon emission constraint," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Niu, Yi-Feng & Song, Yi-Fan & Xu, Xiu-Zhen & Zhao, Xia, 2022. "Efficient reliability computation of a multi-state flow network with cost constraint," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Chang, Ping-Chen & Huang, Ding-Hsiang & Lin, Yi-Kuei & Nguyen, Thi-Phuong, 2021. "Reliability and maintenance models for a time-related multi-state flow network via d-MC approach," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Zhou, Yifan & Liu, Libo & Li, Hao, 2022. "Reliability estimation and optimisation of multistate flow networks using a conditional Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Cheng-Fu Huang & Ding-Hsiang Huang & Yi-Kuei Lin, 2022. "System reliability analysis for a cloud-based network under edge server capacity and budget constraints," Annals of Operations Research, Springer, vol. 312(1), pages 217-234, May.
    8. Lin, Shuai & Jia, Limin & Zhang, Hengrun & Zhang, Pengzhu, 2022. "Reliability of high-speed electric multiple units in terms of the expanded multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Ding-Hsiang Huang & Cheng-Fu Huang & Yi-Kuei Lin, 2019. "Reliability Evaluation for a Stochastic Flow Network Based on Upper and Lower Boundary Vectors," Mathematics, MDPI, vol. 7(11), pages 1-12, November.
    10. Yi-Feng Niu & Can He & De-Qiang Fu, 2022. "Reliability assessment of a multi-state distribution network under cost and spoilage considerations," Annals of Operations Research, Springer, vol. 309(1), pages 189-208, February.
    11. Yeh, Cheng-Ta & Lin, Yi-Kuei & Yeng, Louis Cheng-Lu & Huang, Pei-Tzu, 2021. "Reliability evaluation of a multistate railway transportation network from the perspective of a travel agent," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Huang, Ding-Hsiang & Huang, Cheng-Fu & Lin, Yi-Kuei, 2020. "A novel minimal cut-based algorithm to find all minimal capacity vectors for multi-state flow networks," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1107-1114.
    13. Esha Datta & Neeraj Goyal, 2023. "An efficient sum of disjoint product method for reliability evaluation of stochastic flow networks using d-MPs," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1228-1246, August.
    14. Niu, Yi-Feng, 2021. "Performance measure of a multi-state flow network under reliability and maintenance cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Xu, Xiu-Zhen & Niu, Yi-Feng & Song, Yi-Fan, 2021. "Computing the reliability of a stochastic distribution network subject to budget constraint," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Chang, Ping-Chen, 2022. "MC-based simulation approach for two-terminal multi-state network reliability evaluation without knowing d-MCs," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    17. Paweł Marcin Kozyra, 2020. "Analysis of minimal path and cut vectors in multistate monotone systems and use it for detection of binary type multistate monotone systems," Journal of Risk and Reliability, , vol. 234(5), pages 686-695, October.
    18. Cui, Hongjun & Wang, Fei & Ma, Xinwei & Zhu, Minqing, 2022. "A novel fixed-node unconnected subgraph method for calculating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    19. Yeh, Wei-Chang, 2020. "A new method for verifying d-MC candidates," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Li, Xianxiong & Lan, Xinbo & Mirzaei, A & Aghdam Bonab, Mohammad Jalilvand, 2022. "Reliability and robust resource allocation for Cache-enabled HetNets: QoS-aware mobile edge computing," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021007043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.