IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v199y2020ics0951832019307987.html
   My bibliography  Save this article

Optimization problems for a parallel system with multiple types of dependent components

Author

Listed:
  • Eryilmaz, Serkan
  • Ozkut, Murat

Abstract

This paper is concerned with two optimization problems for a parallel system that consists of dependent components. First, the problem of finding the number of elements in the system that minimizes the mean cost rate of the system is considered. The second problem is concerned with the optimal replacement time of the system. Previous work assumes that the components are independent. We discuss the impact of dropping this assumption. In particular, we numerically examine how the dependence between the components affects the optimal number of units and replacement time for the system which minimize mean cost rates. We first consider the case when the components are exchangeable and dependent, i.e. the system consists of single type of dependent components. Subsequently, we consider a system that consists of multiple types of dependent components. Comparative numerical results are presented for particularly chosen dependence models.

Suggested Citation

  • Eryilmaz, Serkan & Ozkut, Murat, 2020. "Optimization problems for a parallel system with multiple types of dependent components," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019307987
    DOI: 10.1016/j.ress.2020.106911
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019307987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ota, Shuhei & Kimura, Mitsuhiro, 2017. "A statistical dependent failure detection method for n-component parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 376-382.
    2. Davies, Katherine & Dembińska, Anna, 2019. "On the number of failed components in a k-out-of-n system upon system failure when the lifetimes are discretely distributed," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 47-61.
    3. Zhang, Yi & Gomes, António Topa & Beer, Michael & Neumann, Ingo & Nackenhorst, Udo & Kim, Chul-Woo, 2019. "Reliability analysis with consideration of asymmetrically dependent variables: Discussion and application to geotechnical examples," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 261-277.
    4. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    5. Serkan Eryilmaz & Frank P.A. Coolen & Tahani Coolen‐Maturi, 2018. "Mean residual life of coherent systems consisting of multiple types of dependent components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(1), pages 86-97, February.
    6. Navarro, Jorge & Rychlik, Tomasz, 2007. "Reliability and expectation bounds for coherent systems with exchangeable components," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 102-113, January.
    7. Jorge Navarro, 2018. "Distribution-free comparisons of residual lifetimes of coherent systems based on copula properties," Statistical Papers, Springer, vol. 59(2), pages 781-800, June.
    8. Jorge Navarro & Fabio Spizzichino, 2010. "Comparisons of series and parallel systems with components sharing the same copula," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(6), pages 775-791, November.
    9. Eryilmaz, Serkan, 2011. "Estimation in coherent reliability systems through copulas," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 564-568.
    10. Song, Xiaogang & Zhai, Zhengjun & Liu, Yidong & Han, Jie, 2018. "A stochastic approach for the reliability evaluation of multi-state systems with dependent components," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 257-266.
    11. Zhu, Xiaoyan & Boushaba, Mahmoud & Coit, David W. & Benyahia, Azzeddine, 2017. "Reliability and importance measures for m-consecutive-k, l-out-of-n system with non-homogeneous Markov-dependent components," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 1-9.
    12. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murat Ozkut, 2022. "Comparison of the replacement policy in k-out-of-n systems having dependent components," Journal of Risk and Reliability, , vol. 236(1), pages 125-137, February.
    2. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Hashemi, M. & Asadi, M. & Tavangar, M., 2022. "Optimal maintenance strategies for coherent systems: A warranty dependent approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Davies, Katherine & Dembińska, Anna, 2024. "On the residual lifetimes of dependent components upon system failure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Alkaff, Abdullah, 2023. "Optimum warmness levels in general standby systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Ioannis S. Triantafyllou, 2023. "An Archimedean Copulas-Based Approach for m -Consecutive- k -Out-of- n : F Systems with Exchangeable Components," Stats, MDPI, vol. 6(4), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murat Ozkut, 2022. "Comparison of the replacement policy in k-out-of-n systems having dependent components," Journal of Risk and Reliability, , vol. 236(1), pages 125-137, February.
    2. M. Kelkinnama & M. Asadi, 2019. "Stochastic and ageing properties of coherent systems with dependent identically distributed components," Statistical Papers, Springer, vol. 60(3), pages 805-821, June.
    3. Zhengcheng Zhang & N. Balakrishnan, 2016. "Representations of the inactivity time for coherent systems with heterogeneous components and some ordered properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 113-126, January.
    4. M. Chahkandi & Jafar Ahmadi & S. Baratpour, 2014. "Non-parametric prediction intervals for the lifetime of coherent systems," Statistical Papers, Springer, vol. 55(4), pages 1019-1034, November.
    5. Sareh Goli, 2019. "On the conditional residual lifetime of coherent systems under double regularly checking," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 352-363, June.
    6. Salehi, Ebrahim & Tavangar, Mahdi, 2019. "Stochastic comparisons on conditional residual lifetime and inactivity time of coherent systems with exchangeable components," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 327-337.
    7. Eryilmaz, Serkan, 2020. "Age-based preventive maintenance for coherent systems with applications to consecutive-k-out-of-n and related systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Asadi, Majid & Ebrahimi, Nader & Soofi, Ehsan S. & Zohrevand, Younes, 2016. "Jensen–Shannon information of the coherent system lifetime," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 244-255.
    9. Tavangar, Mahdi & Hashemi, Marzieh, 2022. "Reliability and maintenance analysis of coherent systems subject to aging and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    10. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Fu, Lipeng & Wang, Xueqing & Zhao, Heng & Li, Mengnan, 2022. "Interactions among safety risks in metro deep foundation pit projects: An association rule mining-based modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Chin-Chih Chang, 2023. "Optimal maintenance policy for a k-out-of-n system with replacement first and last," Annals of Operations Research, Springer, vol. 323(1), pages 31-43, April.
    13. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    14. Ali, Sajid & Pievatolo, Antonio, 2018. "Time and magnitude monitoring based on the renewal reward process," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 97-107.
    15. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    16. Gaofeng Da & Lvyu Xia & Taizhong Hu, 2014. "On Computing Signatures of k-out-of-n Systems Consisting of Modules," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 223-233, March.
    17. Zarezadeh, S. & Mohammadi, L. & Balakrishnan, N., 2018. "On the joint signature of several coherent systems with some shared components," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1092-1100.
    18. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    19. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    20. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019307987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.