IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v138y2015icp163-175.html
   My bibliography  Save this article

Quantitative characterization of the reliability of simplex buses and stars to compare their benefits in fieldbuses

Author

Listed:
  • Barranco, Manuel
  • Proenza, Julián
  • Almeida, Luís

Abstract

Fieldbuses targeted to highly dependable distributed embedded systems are shifting from bus to star topologies. Surprisingly, despite the efforts into this direction, engineers lack of analyses that quantitatively characterize the system reliability achievable by buses and stars. Thus, to guide engineers in developing adequate bus and star fieldbuses, this work models, quantifies and compares the system reliability provided by simplex buses and stars for the case of the Controller Area Network (CAN). It clarifies how relevant dependability-related aspects affect reliability, refuting some intuitive ideas, and revealing some previously unknown bus and star benefits.

Suggested Citation

  • Barranco, Manuel & Proenza, Julián & Almeida, Luís, 2015. "Quantitative characterization of the reliability of simplex buses and stars to compare their benefits in fieldbuses," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 163-175.
  • Handle: RePEc:eee:reensy:v:138:y:2015:i:c:p:163-175
    DOI: 10.1016/j.ress.2015.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015000071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bistouni, Fathollah & Jahanshahi, Mohsen, 2014. "Analyzing the reliability of shuffle-exchange networks using reliability block diagrams," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 97-106.
    2. Yeh, Wei-Chang & Bae, Changseok & Huang, Chia-Ling, 2015. "A new cut-based algorithm for the multi-state flow network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 1-7.
    3. Padmavathy, N. & Chaturvedi, Sanjay K., 2013. "Evaluation of mobile ad hoc network reliability using propagation-based link reliability model," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fathollah Bistouni & Mohsen Jahanshahi, 2016. "Reliability analysis of multilayer multistage interconnection networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(3), pages 529-551, July.
    2. Bistouni, Fathollah & Jahanshahi, Mohsen, 2015. "Evaluating failure rate of fault-tolerant multistage interconnection networks using Weibull life distribution," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 128-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fathollah Bistouni & Mohsen Jahanshahi, 2016. "Reliability analysis of multilayer multistage interconnection networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(3), pages 529-551, July.
    2. Bistouni, Fathollah & Jahanshahi, Mohsen, 2015. "Evaluating failure rate of fault-tolerant multistage interconnection networks using Weibull life distribution," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 128-146.
    3. Bistouni, Fathollah & Jahanshahi, Mohsen, 2017. "Remove and contraction: A novel method for calculating the reliability of Ethernet ring mesh networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 362-375.
    4. Amit Prakash & Dilip Kumar Yadav & Arvind Choubey, 2020. "Terminal reliability analysis of multistage interconnection networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 110-125, February.
    5. Bai, Guanghan & Zuo, Ming J. & Tian, Zhigang, 2015. "Search for all d-MPs for all d levels in multistate two-terminal networks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 300-309.
    6. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    7. Yeh, Wei-Chang & Tan, Shi-Yi & Zhu, Wenbo & Huang, Chia-Ling & Yang, Guang-yi, 2022. "Novel binary addition tree algorithm (BAT) for calculating the direct lower-bound of the highly reliable binary-state network reliability," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. Bistouni, Fathollah & Jahanshahi, Mohsen, 2014. "Analyzing the reliability of shuffle-exchange networks using reliability block diagrams," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 97-106.
    9. Yeh, Wei-Chang, 2021. "Novel binary-addition tree algorithm (BAT) for binary-state network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "Evaluating the reliability of a stochastic distribution network in terms of minimal cuts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 75-97.
    12. Yeh, Wei-Chang & Hao, Zhifeng & Forghani-elahabad, Majid & Wang, Gai-Ge & Lin, Yih-Lon, 2021. "Novel Binary-Addition Tree Algorithm for Reliability Evaluation of Acyclic Multistate Information Networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    13. Paweł Marcin Kozyra, 2020. "Analysis of minimal path and cut vectors in multistate monotone systems and use it for detection of binary type multistate monotone systems," Journal of Risk and Reliability, , vol. 234(5), pages 686-695, October.
    14. N. Padmavathy & Sanjay K. Chaturvedi, 2015. "Reliability evaluation of capacitated mobile ad hoc network using log-normal shadowing propagation model," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 9(1), pages 70-89.
    15. Tian-yuan, Ye & Lin-lin, Liu & He-wei, Pang & Yuan-zi, Zhou, 2023. "Bayesian Networks based approach to enhance GO methodology for reliability modeling of multi-state consecutive-k-out-of-n: F system," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Yeh, Wei-Chang, 2020. "A new method for verifying d-MC candidates," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Wei, Wei & Hu, Qiuyuan & Zhang, Qinghui, 2024. "Improving node connectivity by optimized dual tree-based effective node consolidation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Yeh, Wei-Chang, 2021. "A quick BAT for evaluating the reliability of binary-state networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Lin, Yi-Kuei & Huang, Ding-Hsiang, 2020. "Reliability analysis for a hybrid flow shop with due date consideration," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    20. Goharshady, Amir Kafshdar & Mohammadi, Fatemeh, 2020. "An efficient algorithm for computing network reliability in small treewidth," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:138:y:2015:i:c:p:163-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.