IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v119y2013icp294-299.html
   My bibliography  Save this article

A performance measure for Markov system with stochastic supply patterns and stochastic demand patterns

Author

Listed:
  • Liu, Baoliang
  • Cui, Lirong
  • Wen, Yanqing
  • Shen, Jingyuan

Abstract

A system consisting of supply and demand is considered in this paper. Both the supply patterns and demand patterns are random. Thus, both the supply and the demand are modeled by Markov processes. The performance measure considered here is the probability that the demand is met by the supply during given time interval [0,t]. A close form expression for the performance measure is obtained by using aggregated stochastic process theory and Kronecker matrix operations. In the meanwhile, the performance measures in a general interval [a,b] and multiple intervals [a1,b1],[a2,b2],…,[am,bm] have also been given. Finally, a numerical example is given to illustrate the results obtained in this paper.

Suggested Citation

  • Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2013. "A performance measure for Markov system with stochastic supply patterns and stochastic demand patterns," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 294-299.
  • Handle: RePEc:eee:reensy:v:119:y:2013:i:c:p:294-299
    DOI: 10.1016/j.ress.2013.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013002111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan Hawkes & Lirong Cui & Zhihua Zheng, 2011. "Modeling the evolution of system reliability performance under alternative environments," IISE Transactions, Taylor & Francis Journals, vol. 43(11), pages 761-772.
    2. Lirong Cui & Shijia Du & Alan Hawkes, 2012. "A study on a single-unit repairable system with state aggregations," IISE Transactions, Taylor & Francis Journals, vol. 44(11), pages 1022-1032.
    3. Lisnianski, Anatoly, 2007. "Extended block diagram method for a multi-state system reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1601-1607.
    4. Csenki, Attila, 2007. "Joint interval reliability for Markov systems with an application in transmission line reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 685-696.
    5. Yeh, Wei-Chang, 2006. "The k-out-of-n acyclic multistate-node networks reliability evaluation using the universal generating function method," Reliability Engineering and System Safety, Elsevier, vol. 91(7), pages 800-808.
    6. Lisnianski, Anatoly & Ding, Yi, 2009. "Redundancy analysis for repairable multi-state system by using combined stochastic processes methods and universal generating function technique," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1788-1795.
    7. Csenki, Attila, 2009. "Stochastic demand patterns for Markov service facilities with neutral and active periods," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 382-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Bei & Cui, Lirong & Fang, Chen, 2019. "Reliability analysis of semi-Markov systems with restriction on transition times," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    2. Zhang, Chao & Chen, Rentong & Wang, Shaoping & Dui, Hongyan & Zhang, Yadong, 2022. "Resilience efficiency importance measure for the selection of a component maintenance strategy to improve system performance recovery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Yu, Huan & Yang, Jun & Mo, Huadong, 2014. "Reliability analysis of repairable multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 90-96.
    4. Cui, Lirong & Wu, Bei, 2019. "Extended Phase-type models for multistate competing risk systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 1-16.
    5. Du, Shijia & Zeng, Zhiguo & Cui, Lirong & Kang, Rui, 2017. "Reliability analysis of Markov history-dependent repairable systems with neglected failures," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 134-142.
    6. Fang, Chen & Cui, Lirong, 2021. "Reliability evaluation for balanced systems with auto-balancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Cui, Lirong & Chen, Jianhui & Wu, Bei, 2017. "New interval availability indexes for Markov repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 12-17.
    8. Quan Zhang & Shihang Yu & Yang Han & Yanjun Li, 2022. "Research on the model of a multistate aggregated Markov repairable system," Journal of Risk and Reliability, , vol. 236(2), pages 266-276, April.
    9. Dhople, S.V. & DeVille, L. & Domínguez-García, A.D., 2014. "A Stochastic Hybrid Systems framework for analysis of Markov reward models," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 158-170.
    10. Lirong Cui & Quan Zhang & Dejing Kong, 2016. "Some New Concepts and Their Computational Formulae in Aggregated Stochastic Processes with Classifications Based on Sojourn Times," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 999-1019, December.
    11. Li, Yan & Cui, Lirong & Lin, Cong, 2017. "Modeling and analysis for multi-state systems with discrete-time Markov regime-switching," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 41-49.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Shijia & Zeng, Zhiguo & Cui, Lirong & Kang, Rui, 2017. "Reliability analysis of Markov history-dependent repairable systems with neglected failures," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 134-142.
    2. Baoliang Liu & Lirong Cui & Yanqing Wen, 2014. "Interval reliability for aggregated Markov repairable system with repair time omission," Annals of Operations Research, Springer, vol. 212(1), pages 169-183, January.
    3. Cui, Lirong & Chen, Jianhui & Wu, Bei, 2017. "New interval availability indexes for Markov repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 12-17.
    4. Yi, He & Cui, Lirong & Shen, Jingyuan & Li, Yan, 2018. "Stochastic properties and reliability measures of discrete-time semi-Markovian systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 162-173.
    5. Shijia Du & Lirong Cui & Cong Lin, 2016. "Some reliability indexes and sojourn time distributions for a repairable degradation model," Journal of Risk and Reliability, , vol. 230(3), pages 334-349, June.
    6. Wang, Guanjun & Duan, Fengjun & Zhou, Yifan, 2018. "Reliability evaluation of multi-state series systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 58-63.
    7. Sheu, Shey-Huei & Chang, Chin-Chih & Chen, Yen-Luan & George Zhang, Zhe, 2015. "Optimal preventive maintenance and repair policies for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 78-87.
    8. Lisnianski, Anatoly & Ding, Yi, 2009. "Redundancy analysis for repairable multi-state system by using combined stochastic processes methods and universal generating function technique," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1788-1795.
    9. Lirong Cui & Quan Zhang & Dejing Kong, 2016. "Some New Concepts and Their Computational Formulae in Aggregated Stochastic Processes with Classifications Based on Sojourn Times," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 999-1019, December.
    10. Yi, He & Cui, Lirong, 2017. "Distribution and availability for aggregated second-order semi-Markov ternary system with working time omission," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 50-60.
    11. Serkan Eryilmaz, 2014. "A new look at dynamic behavior of binary coherent system from a state-level perspective," Annals of Operations Research, Springer, vol. 212(1), pages 115-125, January.
    12. Yan, Xiangbin & Qiu, Hui & Peng, Rui & Wu, Shaomin, 2020. "Optimal configuration of a power grid system with a dynamic performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Yu, Huan & Yang, Jun & Mo, Huadong, 2014. "Reliability analysis of repairable multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 90-96.
    14. Yi, He & Cui, Lirong & Balakrishnan, Narayanaswamy, 2021. "New reliability indices for first- and second-order discrete-time aggregated semi-Markov systems with an application to TT&C system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Y Liu & H-Z Huang & G Levitin, 2008. "Reliability and performance assessment for fuzzy multi-state elements," Journal of Risk and Reliability, , vol. 222(4), pages 675-686, December.
    16. Cui, Lirong & Wu, Bei, 2019. "Extended Phase-type models for multistate competing risk systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 1-16.
    17. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    18. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    19. Tian, Tianzi & Yang, Jun & Li, Lei & Wang, Ning, 2023. "Reliability assessment of performance-based balanced systems with rebalancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    20. Macchi, Marco & Garetti, Marco & Centrone, Domenico & Fumagalli, Luca & Piero Pavirani, Gian, 2012. "Maintenance management of railway infrastructures based on reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 71-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:119:y:2013:i:c:p:294-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.