IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v103y2012icp102-109.html
   My bibliography  Save this article

Application of the load flow and random flow models for the analysis of power transmission networks

Author

Listed:
  • Zio, Enrico
  • Piccinelli, Roberta
  • Delfanti, Maurizio
  • Olivieri, Valeria
  • Pozzi, Mauro

Abstract

In this paper, the classical load flow model and the random flow model are considered for analyzing the performance of power transmission networks. The analysis concerns both the system performance and the importance of the different system elements; this latter is computed by power flow and random walk betweenness centrality measures. A network system from the literature is analyzed, representing a simple electrical power transmission network. The results obtained highlight the differences between the LF “global approach†to flow dispatch and the RF local approach of randomized node-to-node load transfer. Furthermore, computationally the LF model is less consuming than the RF model but problems of convergence may arise in the LF calculation.

Suggested Citation

  • Zio, Enrico & Piccinelli, Roberta & Delfanti, Maurizio & Olivieri, Valeria & Pozzi, Mauro, 2012. "Application of the load flow and random flow models for the analysis of power transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 102-109.
  • Handle: RePEc:eee:reensy:v:103:y:2012:i:c:p:102-109
    DOI: 10.1016/j.ress.2012.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012000208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    2. Zio, E. & Golea, L.R., 2012. "Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 67-74.
    3. Rocco S., Claudio M. & Ramirez-Marquez, José Emmanuel, 2011. "Vulnerability metrics and analysis for communities in complex networks," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1360-1366.
    4. Eusgeld, Irene & Kröger, Wolfgang & Sansavini, Giovanni & Schläpfer, Markus & Zio, Enrico, 2009. "The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 954-963.
    5. Zio, Enrico & Piccinelli, Roberta, 2010. "Randomized flow model and centrality measure for electrical power transmission network analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 379-385.
    6. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
    7. E. Zio, 2007. "From complexity science to reliability efficiency: a new way of looking at complex network systems and critical infrastructures," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 3(3/4), pages 488-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    2. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    3. Harshavardhan Palahalli & Paolo Maffezzoni & Giambattista Gruosso, 2021. "Gaussian Copula Methodology to Model Photovoltaic Generation Uncertainty Correlation in Power Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-16, April.
    4. Li, Daqing & Zhang, Qiong & Zio, Enrico & Havlin, Shlomo & Kang, Rui, 2015. "Network reliability analysis based on percolation theory," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 556-562.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    2. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    3. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    4. Li, Y.F. & Sansavini, G. & Zio, E., 2013. "Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 195-205.
    5. Li, Daqing & Zhang, Qiong & Zio, Enrico & Havlin, Shlomo & Kang, Rui, 2015. "Network reliability analysis based on percolation theory," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 556-562.
    6. Zio, E. & Golea, L.R., 2012. "Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 67-74.
    7. Freiria, Susana & Ribeiro, Bernardete & Tavares, Alexandre O., 2015. "Understanding road network dynamics: Link-based topological patterns," Journal of Transport Geography, Elsevier, vol. 46(C), pages 55-66.
    8. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    9. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    10. Zio, Enrico & Piccinelli, Roberta, 2010. "Randomized flow model and centrality measure for electrical power transmission network analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 379-385.
    11. La Rovere, Stefano & Vestrucci, Paolo, 2012. "Investigation of the structure of a networked system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 214-223.
    12. Nan, Cen & Eusgeld, Irene & Kröger, Wolfgang, 2013. "Analyzing vulnerabilities between SCADA system and SUC due to interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 76-93.
    13. Senderov, S.M. & Vorobev, S.V., 2020. "Approaches to the identification of critical facilities and critical combinations of facilities in the gas industry in terms of its operability," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    14. Valcamonico, Dario & Sansavini, Giovanni & Zio, Enrico, 2020. "Cooperative co-evolutionary approach to optimize recovery for improving resilience in multi-communities," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    15. Wang, Shuliang & Hong, Liu & Chen, Xueguang, 2012. "Vulnerability analysis of interdependent infrastructure systems: A methodological framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3323-3335.
    16. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    17. Fang, Chao & Marle, Franck & Zio, Enrico & Bocquet, Jean-Claude, 2012. "Network theory-based analysis of risk interactions in large engineering projects," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 1-10.
    18. Fang, Yi-Ping & Zio, Enrico, 2013. "Unsupervised spectral clustering for hierarchical modelling and criticality analysis of complex networks," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 64-74.
    19. Yuchen Fang & Xiafei Tang & Li Tang & Yang Chen & Weiyu Wang, 2022. "Local Evolution Model of the Communication Network for Reducing Outage Risk of Power Cyber-Physical System," Energies, MDPI, vol. 15(21), pages 1-14, October.
    20. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:103:y:2012:i:c:p:102-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.