IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v101y2012icp21-34.html
   My bibliography  Save this article

A novel tool for organisational learning and its impact on safety culture in a hospital dispensary

Author

Listed:
  • Sujan, Mark A.

Abstract

Incident reporting as a key mechanism for organisational learning and the establishment of a stronger safety culture are pillars of the current patient safety movement. Studies have suggested that incident reporting in healthcare does not achieve its full potential due to serious barriers to reporting and that sometimes staff may feel alienated by the process. The aim of the work reported in this paper was to prototype a novel approach to organisational learning that allows an organisation to assess and to monitor the status of processes that often give rise to latent failure conditions in the work environment, and to assess whether and through which mechanisms participation in this approach affects local safety culture. The approach was prototyped in a hospital dispensary using Plan-Do-Study-Act (PDSA) cycles, and the effect on safety culture was described qualitatively through semi-structured interviews. The results suggest that the approach has had a positive effect on the safety culture within the dispensary, and that staff perceive the approach to be useful and usable.

Suggested Citation

  • Sujan, Mark A., 2012. "A novel tool for organisational learning and its impact on safety culture in a hospital dispensary," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 21-34.
  • Handle: RePEc:eee:reensy:v:101:y:2012:i:c:p:21-34
    DOI: 10.1016/j.ress.2011.12.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011002845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.12.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.
    2. Hernandez-Perdomo, Elvis & Guney, Yilmaz & Rocco, Claudio M., 2019. "A reliability model for assessing corporate governance using machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 220-231.
    3. Fauquet-Alekhine, Philippe & Boucherand, Anne, 2015. "Structuring effect of tools conceptualized through initial goal fixedness for work activity," LSE Research Online Documents on Economics 65269, London School of Economics and Political Science, LSE Library.
    4. Sujan, Mark, 2015. "An organisation without a memory: A qualitative study of hospital staff perceptions on reporting and organisational learning for patient safety," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 45-52.
    5. Simsekler, Mecit Can Emre & Qazi, Abroon & Alalami, Mohammad Amjad & Ellahham, Samer & Ozonoff, Al, 2020. "Evaluation of patient safety culture using a random forest algorithm," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Sujan, Mark A. & Embrey, David & Huang, Huayi, 2020. "On the application of Human Reliability Analysis in healthcare: Opportunities and challenges," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    7. Simsekler, Mecit Can Emre & Rodrigues, Clarence & Qazi, Abroon & Ellahham, Samer & Ozonoff, Al, 2021. "A comparative study of patient and staff safety evaluation using tree-based machine learning algorithms," Reliability Engineering and System Safety, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:101:y:2012:i:c:p:21-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.