IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v106y2016icp33-47.html
   My bibliography  Save this article

Transcontinental assessment of secure rainwater harvesting systems across Australia

Author

Listed:
  • Peterson, Eric Laurentius

Abstract

This paper documents the utility of the online tool “rainwater harvesting and demand simulation” forwarded by URL http://gettanked.org/, and categorizes performance variability with respect to Köppen–Geiger climatic classifications of the Australian continent. This is a novel tool because it dynamically calculates the irrigation and evaporative cooling demands in addition to any particular per diem allocation of potable water. The analysis may be either from a finite storage tank of specified capacity, or drawn from water mains, but the present paper is focused on the design of secure off-grid rainwater harvesting systems (RWHS).

Suggested Citation

  • Peterson, Eric Laurentius, 2016. "Transcontinental assessment of secure rainwater harvesting systems across Australia," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 33-47.
  • Handle: RePEc:eee:recore:v:106:y:2016:i:c:p:33-47
    DOI: 10.1016/j.resconrec.2015.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915301270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rathnayaka, K. & Maheepala, S. & Nawarathna, B. & George, B. & Malano, H. & Arora, M. & Roberts, P., 2014. "Factors affecting the variability of household water use in Melbourne, Australia," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 85-94.
    2. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    3. Silva, Marcos Dornelas Freitas Machado e & Calijuri, Maria Lúcia & Sales, Francisco José Ferreira de & Souza, Mauro Henrique Batalha de & Lopes, Lucas Sampaio, 2014. "Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 71-81.
    4. Mahmoud, Wifag Hassan & Elagib, Nadir Ahmed & Gaese, Hartmut & Heinrich, Jürgen, 2014. "Rainfall conditions and rainwater harvesting potential in the urban area of Khartoum," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 89-99.
    5. Makki, Anas A. & Stewart, Rodney A. & Beal, Cara D. & Panuwatwanich, Kriengsak, 2015. "Novel bottom-up urban water demand forecasting model: Revealing the determinants, drivers and predictors of residential indoor end-use consumption," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 15-37.
    6. Cook, Stephen & Sharma, Ashok K & Gurung, Thulo Ram, 2014. "Evaluation of alternative water sources for commercial buildings: A case study in Brisbane, Australia," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 86-93.
    7. Bocanegra-Martínez, Andrea & Ponce-Ortega, José María & Nápoles-Rivera, Fabricio & Serna-González, Medardo & Castro-Montoya, Agustín Jaime & El-Halwagi, Mahmoud M., 2014. "Optimal design of rainwater collecting systems for domestic use into a residential development," Resources, Conservation & Recycling, Elsevier, vol. 84(C), pages 44-56.
    8. Behzadian, Kourosh & Kapelan, Zoran, 2015. "Modelling metabolism based performance of an urban water system using WaterMet2," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 84-99.
    9. Vialle, C. & Busset, G. & Tanfin, L. & Montrejaud-Vignoles, M. & Huau, M.-C. & Sablayrolles, C., 2015. "Environmental analysis of a domestic rainwater harvesting system: A case study in France," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 178-184.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rostad, Nathan & Foti, Romano & Montalto, Franco A., 2016. "Harvesting rooftop runoff to flush toilets: Drawing conclusions from four major U.S. cities," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 97-106.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    2. Okoye, Chiemeka Onyeka & Solyalı, Oğuz & Akıntuğ, Bertuğ, 2015. "Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 131-140.
    3. Rathnayaka, K. & Malano, H. & Arora, M. & George, B. & Maheepala, S. & Nawarathna, B., 2017. "Prediction of urban residential end-use water demands by integrating known and unknown water demand drivers at multiple scales II: Model application and validation," Resources, Conservation & Recycling, Elsevier, vol. 118(C), pages 1-12.
    4. Rathnayaka, K. & Malano, H. & Arora, M. & George, B. & Maheepala, S. & Nawarathna, B., 2017. "Prediction of urban residential end-use water demands by integrating known and unknown water demand drivers at multiple scales I: Model development," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 85-92.
    5. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    6. Silva, Marcos Dornelas Freitas Machado e & Calijuri, Maria Lúcia & Sales, Francisco José Ferreira de & Souza, Mauro Henrique Batalha de & Lopes, Lucas Sampaio, 2014. "Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 71-81.
    7. Papadaskalopoulou, C. & Katsou, E. & Valta, K. & Moustakas, K. & Malamis, D. & Dodou, M., 2015. "Review and assessment of the adaptive capacity of the water sector in Cyprus against climate change impacts on water availability," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 95-112.
    8. Isabella Tamine Parra Miranda & Juliana Moletta & Bruno Pedroso & Luiz Alberto Pilatti & Claudia Tania Picinin, 2021. "A Review on Green Technology Practices at BRICS Countries: Brazil, Russia, India, China, and South Africa," SAGE Open, , vol. 11(2), pages 21582440211, May.
    9. Dumit Gómez, Yapur & Teixeira, Luiza Girard, 2017. "Residential rainwater harvesting: Effects of incentive policies and water consumption over economic feasibility," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 56-67.
    10. Zhang, Da & Huang, Qingxu & He, Chunyang & Wu, Jianguo, 2017. "Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 115-130.
    11. Liu, Ariane & Giurco, Damien & Mukheibir, Pierre, 2015. "Motivating metrics for household water-use feedback," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 29-46.
    12. Daniel Słyś & Agnieszka Stec, 2020. "Centralized or Decentralized Rainwater Harvesting Systems: A Case Study," Resources, MDPI, vol. 9(1), pages 1-18, January.
    13. Elena Andrade & Gloria Seoane & Sergio Vila-Tojo & Cristina Gómez-Román & Jose-Manuel Sabucedo, 2021. "Psychological and Situational Variables Associated with Objective Knowledge on Water-Related Issues in a Northern Spanish City," IJERPH, MDPI, vol. 18(6), pages 1-15, March.
    14. Geraldi, Matheus Soares & Ghisi, Enedir, 2017. "Influence of the length of rainfall time series on rainwater harvesting systems: A case study in Berlin," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 169-180.
    15. Wu, Tian & Zhou, Wei & Yan, Xiaoyu & Ou, Xunmin, 2016. "Optimal policy design for photovoltaic power industry with positive externality in China," Resources, Conservation & Recycling, Elsevier, vol. 115(C), pages 22-30.
    16. Tamaryn Menneer & Zening Qi & Timothy Taylor & Cheryl Paterson & Gengyang Tu & Lewis R. Elliott & Karyn Morrissey & Markus Mueller, 2021. "Changes in Domestic Energy and Water Usage during the UK COVID-19 Lockdown Using High-Resolution Temporal Data," IJERPH, MDPI, vol. 18(13), pages 1-21, June.
    17. Chu, Junying & Wang, Jianhua & Wang, Can, 2015. "A structure–efficiency based performance evaluation of the urban water cycle in northern China and its policy implications," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 1-11.
    18. Chamizo-Gonzalez, Julián & Cano-Montero, Elisa Isabel & Muñoz-Colomina, Clara Isabel, 2016. "Municipal Solid Waste Management services and its funding in Spain," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 65-72.
    19. Tang, Xu & Li, Chunyan & Hu, Shiyuan & Liu, Yaolin & Geng, Hong, 2016. "Evaluating extended land consumption in building life cycle to improve land conservation: A case study in Shenyang, China," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 78-89.
    20. Cai, Yanpeng & Yue, Wencong & Xu, Linyu & Yang, Zhifeng & Rong, Qiangqiang, 2016. "Sustainable urban water resources management considering life-cycle environmental impacts of water utilization under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 21-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:106:y:2016:i:c:p:33-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.