IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v665y2025ics0378437125001633.html
   My bibliography  Save this article

Co-authorship prediction method based on degree of gravity and article keywords similarity

Author

Listed:
  • Yuliansyah, Herman
  • Othman, Zulaiha Ali
  • Bakar, Azuraliza Abu

Abstract

Link prediction is a technique for predicting future relationships among candidate node pairs. The co-authorship prediction measures the candidate by examining the unobserved node pairs using the link prediction technique. Previous studies have proposed co-authorship prediction and focused solely on using a topology or content articles to conduct the co-authorship prediction. However, many unobserved node pairs hinder the co-authorship prediction process. A new co-authorship prediction method is required by considering both topological information and research interest due to the authors collaborating to publish scientific papers based on research similarities, although still considering the network topology. The objective of this research is to propose a co-authorship prediction method based on a two-phase process: pruning candidate node pairs based on article content similarities to avoid a large number of candidate co-authors and predicting potential co-authors based on the Degree of Gravity for Link Prediction (DGLP) method. The proposed method is examined using the real-world co-authorship network and assessed using the area under the curve and the paired samples t-test to show a significant improvement. The experiment results show that combining DGLP, keyword extraction, and keyword similarities can help obtain the best performance and outperform the benchmark methods for co-authorship prediction in the unweighted network.

Suggested Citation

  • Yuliansyah, Herman & Othman, Zulaiha Ali & Bakar, Azuraliza Abu, 2025. "Co-authorship prediction method based on degree of gravity and article keywords similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 665(C).
  • Handle: RePEc:eee:phsmap:v:665:y:2025:i:c:s0378437125001633
    DOI: 10.1016/j.physa.2025.130511
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125001633
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifei Zhou & Shaoyong Li & Yaping Liu, 2020. "Graph-based Method for App Usage Prediction with Attributed Heterogeneous Network Embedding," Future Internet, MDPI, vol. 12(3), pages 1-16, March.
    2. Nora Connor & Albert Barberán & Aaron Clauset, 2017. "Using null models to infer microbial co-occurrence networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    3. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    5. Bikramjit Das & Tiandong Wang & Gengling Dai, 2022. "Asymptotic Behavior of Common Connections in Sparse Random Networks," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2071-2092, September.
    6. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    7. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    8. Chun Gui, 2024. "Link prediction based on spectral analysis," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-22, January.
    9. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    10. Shugang Li & Ziming Wang & Beiyan Zhang & Boyi Zhu & Zhifang Wen & Zhaoxu Yu, 2022. "The Research of “Products Rapidly Attracting Users” Based on the Fully Integrated Link Prediction Algorithm," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
    11. Chunjiang Liu & Yikun Han & Haiyun Xu & Shihan Yang & Kaidi Wang & Yongye Su, 2024. "A Community Detection and Graph-Neural-Network-Based Link Prediction Approach for Scientific Literature," Mathematics, MDPI, vol. 12(3), pages 1-20, January.
    12. Giorgos Stamatelatos & George Drosatos & Sotirios Gyftopoulos & Helen Briola & Pavlos S. Efraimidis, 2021. "Point-of-interest lists and their potential in recommendation systems," Information Technology & Tourism, Springer, vol. 23(2), pages 209-239, June.
    13. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    14. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    15. Kaufman, Miron & Diep, Hung T. & Kaufman, Sanda, 2019. "Sociophysics of intractable conflicts: Three-group dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 175-187.
    16. Belik, Ivan & Knudsen, Eirik Sjåholm, 2023. "Link on, Link off: Data-driven management of organizational networks for ambidexterity," Journal of Business Research, Elsevier, vol. 157(C).
    17. Giulio Biondi & Valentina Franzoni, 2020. "Discovering Correlation Indices for Link Prediction Using Differential Evolution," Mathematics, MDPI, vol. 8(11), pages 1-10, November.
    18. Yan Qi & Xin Zhang & Zhengyin Hu & Bin Xiang & Ran Zhang & Shu Fang, 2022. "Choosing the right collaboration partner for innovation: a framework based on topic analysis and link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5519-5550, September.
    19. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    20. Wang, Feifei & Dong, Jiaxin & Lu, Wanzhao & Xu, Shuo, 2023. "Collaboration prediction based on multilayer all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 17(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:665:y:2025:i:c:s0378437125001633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.