IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v622y2023ics0378437123003849.html
   My bibliography  Save this article

Experimental investigation of the stepping dynamics of upstairs walking under time pressure

Author

Listed:
  • Li, Jinghai
  • Zheng, Xiaoping

Abstract

The stairway plays a crucial role in vertical traffic and emergency evacuation in built environments. Due to the constraint of stair geometry, pedestrians use special stepping strategies which could reduce the traffic efficiency of the stairway and even increases the risks of tripping and slipping, thus it is desirable to conduct an in-depth investigation of the stepping dynamics on the stairs. In this paper, field observations that directly capture leg movements were conducted to explore the stepping behaviors of the pedestrians walking upstairs under time pressure. Experimental results indicate that the variations of travel speed on the stairway be ascribed to the variance of stride length. The gait characteristic parameters including stride length, stride duration, and stride velocity can be universally captured by a multimodal statistical model consisting of t-location-scale-distributions and lognormal distribution. In addition, the bimodal distribution of stride length on stair flights indicates that people have two preferred stepping strategies when walking on stairway steps, i.e., single-step (SS) strategy and double-step (DS) strategy. Moreover, it was found that time pressure could trigger a transition from SS to DS. The DS strategy helps the crowd to speed up and thus contribute to maintaining a sufficient traffic efficiency during peak hours, such as morning office arrival times. These findings will help the research community to better understand gait characteristics on staircases and should be beneficial for safer pedestrian designs.

Suggested Citation

  • Li, Jinghai & Zheng, Xiaoping, 2023. "Experimental investigation of the stepping dynamics of upstairs walking under time pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
  • Handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123003849
    DOI: 10.1016/j.physa.2023.128829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123003849
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Jiaojiao & Wang, Jinghong & Li, Jia & Li, Jiachen & Xu, Shuangyan & Liu, Juan & Li, Jiapeng & Wang, Yan, 2022. "Study on the law of vertical evacuation behavior during earthquakes considering social relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    3. Chen, Juan & Ma, Jian & Lo, S.M., 2018. "Geometric constraint based pedestrian movement model on stairways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1212-1230.
    4. Yi Ma & Eric Wai Ming Lee & Meng Shi & Richard Kwok Kit Yuen, 2021. "Spontaneous synchronization of motion in pedestrian crowds of different densities," Nature Human Behaviour, Nature, vol. 5(4), pages 447-457, April.
    5. Zeng, Guang & Cao, Shuchao & Liu, Chi & Song, Weiguo, 2018. "Experimental and modeling study on relation of pedestrian step length and frequency under different headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 237-248.
    6. Ye, Rui & Zeng, Yiping & Zeng, Guang & Huang, Zhongyi & Li, Xiaolian & Fang, Zhiming & Song, Weiguo, 2021. "Pedestrian single-file movement on stairs under different motivations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Weisong & Zhang, Jun & Rasa, Abdul Rahim & Li, Xudong & Ren, Xiangxia & Song, Weiguo, 2023. "Understanding step synchronization in social groups: A novel method to recognize group," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    2. Xue, Shuqi & Shiwakoti, Nirajan, 2023. "A meta-synthesis of experimental studies of pedestrian movement in single-file flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Paetzke, Sarah & Boltes, Maik & Seyfried, Armin, 2022. "Influence of individual factors on fundamental diagrams of pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    4. Wei, Yidong & Hu, Zuoan & Zeng, Tian & Xie, Wei & Ma, Yi, 2023. "Influence of walkway slope on single-file pedestrian flow dynamics: Results from an experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Zeng, Guang & Ye, Rui & Zhang, Jun & Cao, Shuchao & Song, Weiguo, 2023. "Macroscopic and microscopic movement properties of the fast walking pedestrian flow with single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    6. Wang, Weili & Zhang, Jingjing & Li, Haicheng & Xie, Qimiao, 2020. "Experimental study on unidirectional pedestrian flows in a corridor with a fixed obstacle and a temporary obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    7. Fu, Zhijian & Xiong, Xingwen & Luo, Lin & Yang, Yunjia & Feng, Yujing & Chen, Hua, 2022. "Influence of rotation on pedestrian flow considering bipedal features: Modeling using a fine discrete floor field cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    8. Thompson, Peter & Tavana, Hossein & Goulding, Cathy & Frantzich, Håkan & Boyce, Karen & Nilsson, Daniel & Larsson, Gabriel & Friholm, Jesper & McGrath, Denise, 2022. "Experimental analyses of step extent and contact buffer in pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    9. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Bao, Yu & Huo, Feizhou, 2021. "An agent-based model for staircase evacuation considering agent’s rotational behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    11. Tang, Tie-Qiao & Zhang, Bo-Tao & Zhang, Jian & Wang, Tao, 2019. "Statistical analysis and modeling of pedestrian flow in university canteen during peak period," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 29-40.
    12. Subramanian, Gayathri Harihara & Choubey, Nipun & Verma, Ashish, 2022. "Modelling and simulating serpentine group behaviour in crowds using modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    13. Xiao, Hanyi & Wang, Qiao & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the single-file movement of mice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 676-686.
    14. Zhou, Min & Ge, Shichao & Liu, Jiali & Dong, Hairong & Wang, Fei-Yue, 2020. "Field observation and analysis of waiting passengers at subway platform — A case study of Beijing subway stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    15. Cheng-Jie Jin & Ke-Da Shi & Shu-Yi Fang, 2023. "Simulation of Single-File Pedestrian Flow under High-Density Condition by a Modified Social Force Model," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    16. Hu, Yanghui & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the movement strategies of individuals in multidirectional flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    17. Li, Tao & Shi, Dongdong & Chen, Juan & Li, Huiwen & Ma, Jian, 2022. "Experimental study of movement characteristics for different walking postures in a narrow channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    18. Jiang, Yan-Qun & Hu, Ying-Gang & Huang, Xiaoqian, 2022. "Modeling pedestrian flow through a bottleneck based on a second-order continuum model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    19. Liu, Weisong & Zhang, Jun & Li, Xudong & Song, Weiguo, 2022. "Avoidance behaviors of pedestrians in a virtual-reality-based experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    20. Can Liao & Kejun Zhu & Haixiang Guo & Jian Tang, 2019. "Simulation Research on Safe Flow Rate of Bidirectional Crowds Using Bayesian-Nash Equilibrium," Complexity, Hindawi, vol. 2019, pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:622:y:2023:i:c:s0378437123003849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.