IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v604y2022ics0378437122004617.html
   My bibliography  Save this article

Reconstruction of the microstructure based on hierarchical simulated annealing with erosion method

Author

Listed:
  • Chen, DongDong
  • Liu, Yang
  • Wang, XiaoRui
  • Wang, Mei

Abstract

The microstructure of porous media directly affects its macroscopic properties (such as mechanical properties, electromagnetic properties, capillary properties and transport properties). As for sandstone, the distribution of pore has an important effect on the conductivity and transport properties. In this paper, a novel modeling scheme based on hierarchical simulated annealing with erosion method (HSAE), which can reconstruct more accurate microstructure than that of hierarchical simulated annealing method (HSA) and simulated annealing method (SA), is proposed and applied to the optimization of microstructure reconstruction. In the paper, the two-point correlation function (S2(r)) obtained from two-dimensional (2D) reference image is used to reconstruct its corresponding microstructure. From the result of the 2D reconstruction, it is found that the phase distribution for the reconstructed image of our proposed method is more similar to the original image than that of HSA reconstruction and SA reconstruction, which illustrates that our proposed method can generate more similar morphological information as that of the original image. The comparison of the two-point cluster function between the reconstructed microstructures and the reference image indicates that our proposed method can improve the accuracy of reconstruction. Next, HSAE, HSA and SA methods are used to reconstruct the three-dimensional (3D) microstructures from the 2D slices. The comparison of the permeability between the original 3D microstructures and those of the reconstructions shows that the permeability of the reconstructions by our proposed method is more close to that of the original 3D microstructures. The reconstruction time of HSAE method is shorter than that of SA method, and longer than that of HSA method. That is because the pixels participating in HSAE reconstruction is less than that of SA reconstruction, and more than that of HSA reconstruction.

Suggested Citation

  • Chen, DongDong & Liu, Yang & Wang, XiaoRui & Wang, Mei, 2022. "Reconstruction of the microstructure based on hierarchical simulated annealing with erosion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
  • Handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122004617
    DOI: 10.1016/j.physa.2022.127694
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122004617
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Dongdong & He, Xiaohai & Teng, Qizhi & Xu, Zhi & Li, Zhengji, 2014. "Reconstruction of multiphase microstructure based on statistical descriptors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 240-250.
    2. Frączek, D. & Piasecki, R., 2014. "Decomposable multiphase entropic descriptor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 75-81.
    3. Biswal, B. & Manwart, C. & Hilfer, R., 1998. "Three-dimensional local porosity analysis of porous media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 255(3), pages 221-241.
    4. Latief, F.D.E. & Biswal, B. & Fauzi, U. & Hilfer, R., 2010. "Continuum reconstruction of the pore scale microstructure for Fontainebleau sandstone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1607-1618.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dongdong & He, Xiaohai & Teng, Qizhi & Xu, Zhi & Li, Zhengji, 2014. "Reconstruction of multiphase microstructure based on statistical descriptors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 240-250.
    2. Widjajakusuma, J & Manwart, C & Biswal, B & Hilfer, R, 1999. "Exact and approximate calculations for the conductivity of sandstones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 325-331.
    3. Biswal, B. & Hilfer, R., 1999. "Microstructure analysis of reconstructed porous media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 266(1), pages 307-311.
    4. Chen, DongDong & Wang, XiaoRui & Nan, JiaoFen, 2023. "A new framework for the reconstruction of porous media based on statistical characteristics: Multiscale erosion simulated annealing method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    5. Biswal, B. & Manwart, C. & Hilfer, R. & Bakke, S. & Øren, P.E., 1999. "Quantitative analysis of experimental and synthetic microstructures for sedimentary rock," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 273(3), pages 452-475.
    6. Wang, Yuzhu & Rahman, Sheik S. & Arns, Christoph H., 2018. "Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 177-188.
    7. Kurochkina, E.P. & Soboleva, O.N., 2011. "Effective coefficients of quasi-steady Maxwell’s equations with multiscale isotropic random conductivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 231-244.
    8. Latief, F.D.E. & Biswal, B. & Fauzi, U. & Hilfer, R., 2010. "Continuum reconstruction of the pore scale microstructure for Fontainebleau sandstone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1607-1618.
    9. Marina V Karsanina & Kirill M Gerke & Elena B Skvortsova & Dirk Mallants, 2015. "Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-26, May.
    10. Manwart, C. & Hilfer, R., 2002. "Numerical simulation of creeping fluid flow in reconstruction models of porous media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 706-713.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122004617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.