IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v536y2019ics0378437119314918.html
   My bibliography  Save this article

Entropy formation analysis of MHD boundary layer flow of nanofluid over a porous shrinking wall

Author

Listed:
  • Rashid, I.
  • Sagheer, M.
  • Hussain, S.

Abstract

In the current paper, we investigate the entropy analysis of MHD boundary layer flow of copper (Cu)-water based nanofluid along with the porous shrinking wall. Heat transfer analysis is also taken into account with the thermal radiation effects. The single phase nanofluid model is used for the analysis of the effective thermal conductivity. Mathematical modeling is performed to change the physical system into a set of mathematical equations which are further simplified by using suitable variables. Exact solutions for the velocity and temperature profiles are computed and interpreted for diverse physical of interest. It is depicted that by enhancing the magnitude of solid volume fraction and velocity slip parameter of nanoparticles the velocity profile is increased. The results indicate an increment in the Hartman number increases the temperature and thermal boundary layer thickness. It is observed that the entropy generation profile is enhanced by increasing the value of Brinkman number and Reynolds number. The irreversibility parameter is decreasing function of Brinkman number.

Suggested Citation

  • Rashid, I. & Sagheer, M. & Hussain, S., 2019. "Entropy formation analysis of MHD boundary layer flow of nanofluid over a porous shrinking wall," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  • Handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119314918
    DOI: 10.1016/j.physa.2019.122608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119314918
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javad Alinejad & Sina Samarbakhsh, 2012. "Viscous Flow over Nonlinearly Stretching Sheet with Effects of Viscous Dissipation," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-10, May.
    2. Nguyen-Thoi, Trung & Sheikholeslami, M. & Hamid, Muhammad & Haq, Rizwan-ul & Shafee, Ahmad, 2019. "CVFEM modeling for nanofluid behavior involving non-equilibrium model and Lorentz effect in appearance of radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali J. Chamkha & Fatih Selimefendigil & Hakan F. Oztop, 2020. "Pulsating Flow of CNT–Water Nanofluid Mixed Convection in a Vented Trapezoidal Cavity with an Inner Conductive T-Shaped Object and Magnetic Field Effects," Energies, MDPI, vol. 13(4), pages 1-30, February.
    2. Sumayyah Alabdulhadi & Iskandar Waini & Sameh E. Ahmed & Anuar Ishak, 2021. "Hybrid Nanofluid Flow and Heat Transfer Past an Inclined Surface," Mathematics, MDPI, vol. 9(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    3. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    4. Sohail, Muhammad & Naz, Rahila, 2020. "Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    5. Ali J. Chamkha & Fatih Selimefendigil & Hakan F. Oztop, 2020. "Pulsating Flow of CNT–Water Nanofluid Mixed Convection in a Vented Trapezoidal Cavity with an Inner Conductive T-Shaped Object and Magnetic Field Effects," Energies, MDPI, vol. 13(4), pages 1-30, February.
    6. Dongmin Yu & Rijun Wang, 2022. "An Optimal Investigation of Convective Fluid Flow Suspended by Carbon Nanotubes and Thermal Radiation Impact," Mathematics, MDPI, vol. 10(9), pages 1-15, May.
    7. Sara I. Abdelsalam & Abdullah Z. Zaher, 2021. "Leveraging Elasticity to Uncover the Role of Rabinowitsch Suspension through a Wavelike Conduit: Consolidated Blood Suspension Application," Mathematics, MDPI, vol. 9(16), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119314918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.