IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v517y2019icp475-483.html
   My bibliography  Save this article

Investigation of the temporal correlations between earthquake magnitudes before the Mexico M8.2 earthquake on 7 September 2017

Author

Listed:
  • Sarlis, Nicholas V.
  • Skordas, Efthimios S.
  • Varotsos, Panayiotis A.
  • Ramírez-Rojas, Alejandro
  • Flores-Márquez, E. Leticia

Abstract

By employing Detrended Fluctuation Analysis (DFA), which has been established as a standard method to investigate long range correlations in nonstationary time series, we study the temporal correlations between the magnitudes of the earthquakes that occurred before the recent deadly Mexico M8.2 earthquake on 7 September 2017 in Chiapas region. Our aim here is to shed light on the origin of the following precursory phenomenon found in our previous publication (Sarlis et al., 2018): Upon considering the analysis of seismicity in the new time domain termed natural time, it was shown that the entropy change of seismicity under time reversal exhibited an important minimum almost 3 months before this major earthquake. Here the application of DFA to earthquake magnitude time series reveals that this minimum of the entropy change of seismicity is preceded as well as followed by characteristic changes of temporal correlations between earthquake magnitudes, which are quantified by the DFA exponent α. In particular, before this minimum the long range correlations breakdown to an almost random behavior possibly turning to anticorrelation (α≤0.5) while after the minimum (and before the major M8.2 earthquake) long range correlations develop with an exponent α between 0.6 and 0.7.

Suggested Citation

  • Sarlis, Nicholas V. & Skordas, Efthimios S. & Varotsos, Panayiotis A. & Ramírez-Rojas, Alejandro & Flores-Márquez, E. Leticia, 2019. "Investigation of the temporal correlations between earthquake magnitudes before the Mexico M8.2 earthquake on 7 September 2017," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 475-483.
  • Handle: RePEc:eee:phsmap:v:517:y:2019:i:c:p:475-483
    DOI: 10.1016/j.physa.2018.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118314730
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarlis, Nicholas V. & Skordas, Efthimios S. & Varotsos, Panayiotis A. & Ramírez-Rojas, Alejandro & Flores-Márquez, E. Leticia, 2018. "Natural time analysis: On the deadly Mexico M8.2 earthquake on 7 September 2017," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 625-634.
    2. F. Caruso & H. Kantz, 2011. "Prediction of extreme events in the OFC model on a small world network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 79(1), pages 7-11, January.
    3. Hu, Kun & Ivanov, Plamen Ch. & Chen, Zhi & Hilton, Michael F. & Stanley, H.Eugene & Shea, Steven A., 2004. "Non-random fluctuations and multi-scale dynamics regulation of human activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 307-318.
    4. Ivanova, K & Ausloos, M, 1999. "Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 349-354.
    5. Ashkenazy, Yosef & Havlin, Shlomo & Ivanov, Plamen Ch. & Peng, Chung-K. & Schulte-Frohlinde, Verena & Stanley, H.Eugene, 2003. "Magnitude and sign scaling in power-law correlated time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 19-41.
    6. Ashkenazy, Yosef & M. Hausdorff, Jeffrey & Ch. Ivanov, Plamen & Eugene Stanley, H, 2002. "A stochastic model of human gait dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 662-670.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Efthimios S. Skordas & Stavros-Richard G. Christopoulos & Nicholas V. Sarlis, 2020. "Detrended fluctuation analysis of seismicity and order parameter fluctuations before the M7.1 Ridgecrest earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 697-711, January.
    2. Seuront, Laurent & Seuront-Scheffbuch, Dorine, 2018. "Size rules life, but does it in the assessment of medical vigilance best practice? Towards a testable hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 707-715.
    3. Loukidis, Andronikos & Perez-Oregon, Jennifer & Pasiou, Ermioni D. & Sarlis, Nicholas V. & Triantis, Dimos, 2021. "Similarity of fluctuations in critical systems: Acoustic emissions observed before fracture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    4. Damian G Kelty-Stephen, 2018. "Multifractal evidence of nonlinear interactions stabilizing posture for phasmids in windy conditions: A reanalysis of insect postural-sway data," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    5. Mahmoodi, Korosh & West, Bruce J. & Grigolini, Paolo, 2020. "On the dynamical foundation of multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    6. Martín-Montoya, L.A. & Aranda-Camacho, N.M. & Quimbay, C.J., 2015. "Long-range correlations and trends in Colombian seismic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 124-133.
    7. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Currenti, Gilda & Negro, Ciro Del & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1921-1929.
    9. Jiang, Lei & Zhang, Jiping & Liu, Xinwei & Li, Fei, 2016. "Multi-fractal scaling comparison of the Air Temperature and the Surface Temperature over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 783-792.
    10. Zhang, Hong-Yan & Kang, Ming-Cui & Li, Jing-Qiang & Liu, Hai-Tao, 2017. "R/S analysis of reaction time in Neuron Type Test for human activity in civil aviation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 859-870.
    11. Mariani, M.C. & Florescu, I. & Beccar Varela, M.P. & Ncheuguim, E., 2010. "Study of memory effects in international market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1653-1664.
    12. Kalamaras, N. & Philippopoulos, K. & Deligiorgi, D. & Tzanis, C.G. & Karvounis, G., 2017. "Multifractal scaling properties of daily air temperature time series," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 38-43.
    13. Santos, José Vicente Cardoso & Perini, Noéle Bissoli & Moret, Marcelo Albano & Nascimento, Erick Giovani Sperandio & Moreira, Davidson Martins, 2021. "Scaling behavior of wind speed in the coast of Brazil and the South Atlantic Ocean: The crossover phenomenon," Energy, Elsevier, vol. 217(C).
    14. Michele Caraglio & Fulvio Baldovin & Attilio L. Stella, 2021. "How Fast Does the Clock of Finance Run?—A Time-Definition Enforcing Stationarity and Quantifying Overnight Duration," JRFM, MDPI, vol. 14(8), pages 1-15, August.
    15. Ausloos, Marcel & Cerqueti, Roy & Lupi, Claudio, 2017. "Long-range properties and data validity for hydrogeological time series: The case of the Paglia river," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 39-50.
    16. Kavasseri, Rajesh G. & Nagarajan, Radhakrishnan, 2005. "A multifractal description of wind speed records," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 165-173.
    17. Ruben Fossion & Ana Leonor Rivera & Juan C Toledo-Roy & Jason Ellis & Maia Angelova, 2017. "Multiscale adaptive analysis of circadian rhythms and intradaily variability: Application to actigraphy time series in acute insomnia subjects," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
    18. França, Lucas Gabriel Souza & Montoya, Pedro & Miranda, José Garcia Vivas, 2019. "On multifractals: A non-linear study of actigraphy data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 612-619.
    19. Gajardo, Gabriel & Kristjanpoller, Werner D. & Minutolo, Marcel, 2018. "Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 195-205.
    20. Pavlov, A.N. & Dubrovsky, A.I. & Koronovskii Jr, A.A. & Pavlova, O.N. & Semyachkina-Glushkovskaya, O.V. & Kurths, J., 2020. "Extended detrended fluctuation analysis of sound-induced changes in brain electrical activity," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:517:y:2019:i:c:p:475-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.