IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v515y2019icp81-92.html
   My bibliography  Save this article

The noisy voter model under the influence of contrarians

Author

Listed:
  • Khalil, Nagi
  • Toral, Raúl

Abstract

The influence of contrarians on the noisy voter model is studied at the mean-field level. The noisy voter model is a variant of the voter model where agents can adopt two opinions, optimistic or pessimistic, and can change them by means of an imitation (herding) and an intrinsic (noise) mechanisms. An ensemble of noisy voters undergoes a finite-size phase transition, upon increasing the relative importance of the noise to the herding, form a bimodal phase where most of the agents share the same opinion to a unimodal phase where almost the same fraction of agent are in opposite states. By the inclusion of contrarians we allow for some voters to adopt the opposite opinion of other agents (anti-herding). We first consider the case of only contrarians and show that the only possible steady state is the unimodal one. More generally, when voters and contrarians are present, we show that the bimodal-unimodal transition of the noisy voter model prevails only if the number of contrarians in the system is smaller than four, and their characteristic rates are small enough. For the number of contrarians bigger or equal to four, the voters and the contrarians can be seen only in the unimodal phase. Moreover, if the number of voters and contrarians, as well as the noise and herding rates, are of the same order, then the probability functions of the steady state are very well approximated by the Gaussian distribution.

Suggested Citation

  • Khalil, Nagi & Toral, Raúl, 2019. "The noisy voter model under the influence of contrarians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 81-92.
  • Handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:81-92
    DOI: 10.1016/j.physa.2018.09.178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118313086
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    2. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2015. "Markets, herding and response to external information," Papers 1506.03708, arXiv.org, revised Jun 2015.
    3. Kashisaz, Hadi & Hosseini, S. Samira & Darooneh, Amir H., 2014. "The effect of zealots on the rate of consensus achievement in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 49-57.
    4. M. S. de la Lama & I. G. Szendro & J. R. Iglesias & H. S. Wio, 2006. "Van Kampen's expansion approach in an opinion formation model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 51(3), pages 435-442, June.
    5. Galam, Serge & Jacobs, Frans, 2007. "The role of inflexible minorities in the breaking of democratic opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 366-376.
    6. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2016. "The noisy voter model on complex networks," Papers 1602.06935, arXiv.org, revised Apr 2016.
    7. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    8. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    9. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    10. Sven Banisch, 2014. "From Microscopic Heterogeneity To Macroscopic Complexity In The Contrarian Voter Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1-30.
    11. Fudolig, Mikaela Irene D. & Esguerra, Jose Perico H., 2014. "Analytic treatment of consensus achievement in the single-type zealotry voter model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 626-634.
    12. Galam, Serge, 2000. "Real space renormalization group and totalitarian paradox of majority rule voting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 66-76.
    13. Galam, Serge, 2004. "Contrarian deterministic effects on opinion dynamics: “the hung elections scenario”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 453-460.
    14. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.
    15. Granovsky, Boris L. & Madras, Neal, 1995. "The noisy voter model," Stochastic Processes and their Applications, Elsevier, vol. 55(1), pages 23-43, January.
    16. Galam, Serge, 2011. "Collective beliefs versus individual inflexibility: The unavoidable biases of a public debate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(17), pages 3036-3054.
    17. Gambaro, Joao Paulo & Crokidakis, Nuno, 2017. "The influence of contrarians in the dynamics of opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 465-472.
    18. André C. R. Martins & Cleber D. Kuba, 2010. "The Importance Of Disagreeing: Contrarians And Extremism In The Coda Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 13(05), pages 621-634.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peralta, Antonio F. & Khalil, Nagi & Toral, Raúl, 2020. "Ordering dynamics in the voter model with aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
    2. Khalil, Nagi, 2021. "Approach to consensus in models of continuous-opinion dynamics: A study inspired by the physics of granular gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    3. Deeb, Omar El, 2023. "Entropic spatial auto-correlation of voter uncertainty and voter transitions in parliamentary elections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    4. Evangelos Ioannidis & Nikos Varsakelis & Ioannis Antoniou, 2020. "Promoters versus Adversaries of Change: Agent-Based Modeling of Organizational Conflict in Co-Evolving Networks," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    5. Kononovicius, Aleksejus, 2021. "Supportive interactions in the noisy voter model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peralta, Antonio F. & Khalil, Nagi & Toral, Raúl, 2020. "Ordering dynamics in the voter model with aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
    2. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2016. "The noisy voter model on complex networks," Papers 1602.06935, arXiv.org, revised Apr 2016.
    3. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    4. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    5. Eminente, Clara & Artime, Oriol & De Domenico, Manlio, 2022. "Interplay between exogenous triggers and endogenous behavioral changes in contagion processes on social networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    7. Qian, Shen & Liu, Yijun & Galam, Serge, 2015. "Activeness as a key to counter democratic balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 187-196.
    8. Kirill S. Glavatskiy & Mikhail Prokopenko & Adrian Carro & Paul Ormerod & Michael Harré, 2021. "Explaining herding and volatility in the cyclical price dynamics of urban housing markets using a large-scale agent-based model," SN Business & Economics, Springer, vol. 1(6), pages 1-21, June.
    9. Serge Galam, 2016. "The invisible hand and the rational agent are behind bubbles and crashes," Papers 1601.02990, arXiv.org.
    10. Toth, Gabor & Galam, Serge, 2022. "Deviations from the majority: A local flip model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. C.R. Martins, André, 2014. "Discrete opinion models as a limit case of the CODA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 352-357.
    12. F. Jacobs & S. Galam, 2019. "Two-Opinions-Dynamics Generated By Inflexibles And Non-Contrarian And Contrarian Floaters," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-30, June.
    13. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    14. Sunyoung Lee & Keun Lee, 2021. "3% rules the market: herding behavior of a group of investors, asset market volatility, and return to the group in an agent-based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(2), pages 359-380, April.
    15. Galam, Serge, 2016. "The invisible hand and the rational agent are behind bubbles and crashes," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 209-217.
    16. Aleksejus Kononovicius, 2017. "Empirical Analysis and Agent-Based Modeling of the Lithuanian Parliamentary Elections," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    17. Gimenez, M. Cecilia & Paz García, Ana Pamela & Burgos Paci, Maxi A. & Reinaudi, Luis, 2016. "Range of interaction in an opinion evolution model of ideological self-positioning: Contagion, hesitance and polarization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 320-330.
    18. Galam, Serge, 2011. "Collective beliefs versus individual inflexibility: The unavoidable biases of a public debate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(17), pages 3036-3054.
    19. Poindron, Alexis, 2021. "A general model of binary opinions updating," Mathematical Social Sciences, Elsevier, vol. 109(C), pages 52-76.
    20. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:81-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.