IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v513y2019icp518-523.html
   My bibliography  Save this article

Phase transitions and universality in the Sznajd model with anticonformity

Author

Listed:
  • Calvelli, Matheus
  • Crokidakis, Nuno
  • Penna, Thadeu J.P.

Abstract

In this work we study the dynamics of opinion formation in the Sznajd model with anticonformity on regular lattices in two and three dimensions. The anticonformity behavior is similar to the introduction of Galam’s contrarians in the population. The model was previously studied in fully-connected networks, and it was found an order–disorder transition with the order parameter exponent β=1∕2 calculated analytically. However, the other phase transition exponents were not estimated, and no discussion about the possible universality of the phase transition was done. Our target in this work is to estimate numerically the other exponents γ andν for the fully-connected case, as well as the three exponents for the model defined in square and cubic lattices. Our results suggest that the model belongs to the Ising model universality class in the respective dimensions.

Suggested Citation

  • Calvelli, Matheus & Crokidakis, Nuno & Penna, Thadeu J.P., 2019. "Phase transitions and universality in the Sznajd model with anticonformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 518-523.
  • Handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:518-523
    DOI: 10.1016/j.physa.2018.09.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118311531
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nyczka, Piotr & Cisło, Jerzy & Sznajd-Weron, Katarzyna, 2012. "Opinion dynamics as a movement in a bistable potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 317-327.
    2. Biswas, Soumyajyoti & Chatterjee, Arnab & Sen, Parongama, 2012. "Disorder induced phase transition in kinetic models of opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3257-3265.
    3. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    4. Johannes J. Schneider, 2004. "The Influence Of Contrarians And Opportunists On The Stability Of A Democracy In The Sznajd Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 659-674.
    5. Andrzej Krawiecki, 2018. "Spin-glass-like transition in the majority-vote model with anticonformists," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(3), pages 1-7, March.
    6. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    7. Galam, Serge, 2004. "Contrarian deterministic effects on opinion dynamics: “the hung elections scenario”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 453-460.
    8. Javarone, Marco Alberto, 2014. "Social influences in opinion dynamics: The role of conformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 19-30.
    9. Galam, Serge, 2004. "Sociophysics: a personal testimony," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 49-55.
    10. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    11. Nuno Crokidakis, 2016. "Noise and disorder: Phase transitions and universality in a model of opinion formation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(06), pages 1-12, June.
    12. Galam, Serge, 1999. "Application of statistical physics to politics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 132-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sznajd-Weron, Katarzyna & Sznajd, Józef & Weron, Tomasz, 2021. "A review on the Sznajd model — 20 years after," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Muslim, Roni & Wella, Sasfan A. & Nugraha, Ahmad R.T., 2022. "Phase transition in the majority rule model with the nonconformist agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    2. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    3. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    4. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    5. Muslim, Roni & Wella, Sasfan A. & Nugraha, Ahmad R.T., 2022. "Phase transition in the majority rule model with the nonconformist agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    6. Gimenez, M. Cecilia & Paz García, Ana Pamela & Burgos Paci, Maxi A. & Reinaudi, Luis, 2016. "Range of interaction in an opinion evolution model of ideological self-positioning: Contagion, hesitance and polarization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 320-330.
    7. Qian, Shen & Liu, Yijun & Galam, Serge, 2015. "Activeness as a key to counter democratic balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 187-196.
    8. Toth, Gabor & Galam, Serge, 2022. "Deviations from the majority: A local flip model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    9. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    10. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    11. Li, Tingyu & Zhu, Hengmin, 2020. "Effect of the media on the opinion dynamics in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    13. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    14. Eger, Steffen, 2016. "Opinion dynamics and wisdom under out-group discrimination," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 97-107.
    15. Benjamin Cabrera & Björn Ross & Daniel Röchert & Felix Brünker & Stefan Stieglitz, 2021. "The influence of community structure on opinion expression: an agent-based model," Journal of Business Economics, Springer, vol. 91(9), pages 1331-1355, November.
    16. Mukherjee, Sudip & Biswas, Soumyajyoti & Chatterjee, Arnab & Chakrabarti, Bikas K., 2021. "The Ising universality class of kinetic exchange models of opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    17. Melatagia Yonta, Paulin & Ndoundam, René, 2009. "Opinion dynamics using majority functions," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 223-244, March.
    18. Han, Wenchen & Gao, Shun & Huang, Changwei & Yang, Junzhong, 2022. "Non-consensus states in circular opinion model with repulsive interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    19. Zhu, Jiefan & Yao, Yiping & Tang, Wenjie & Zhang, Haoming, 2022. "An agent-based model of opinion dynamics with attitude-hiding behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    20. Balankin, Alexander S. & Martínez Cruz, Miguel Ángel & Martínez, Alfredo Trejo, 2011. "Effect of initial concentration and spatial heterogeneity of active agent distribution on opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3876-3887.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:518-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.