IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp523-536.html
   My bibliography  Save this article

A framework of community detection based on individual labels in attribute networks

Author

Listed:
  • Nan, Dong-Yang
  • Yu, Wei
  • Liu, Xiao
  • Zhang, Yun-Peng
  • Dai, Wei-Di

Abstract

Community detection is an important problem for understanding the structure and function of complex networks and has attracted a lot of attention in recent decades. Most community detection algorithms only focus on the topology of networks. However, there is still much valuable information hidden in the networks, such as the attributes or content of the nodes and the useful prior information. Obviously, taking full advantage of these resources can improve the effectiveness of community detection. In this paper, we present a semi-supervised community detection framework named SCDAN (Semi-supervised Community Detection in Attribute Networks), in which a non-negative matrix factorization model is utilized to effectively integrate network topology, node attributes and individual labels simultaneously. The comparative experiments on real-world networks show that SCDAN significantly improves the performance of community detection and provides semantic interpretation of communities.

Suggested Citation

  • Nan, Dong-Yang & Yu, Wei & Liu, Xiao & Zhang, Yun-Peng & Dai, Wei-Di, 2018. "A framework of community detection based on individual labels in attribute networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 523-536.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:523-536
    DOI: 10.1016/j.physa.2018.08.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118310434
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Overlapping community detection using neighborhood ratio matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 510-521.
    2. Wang, Xingyuan & Qin, Xiaomeng, 2016. "Asymmetric intimacy and algorithm for detecting communities in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 569-578.
    3. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    4. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    5. McDaid, Aaron F. & Murphy, Thomas Brendan & Friel, Nial & Hurley, Neil J., 2013. "Improved Bayesian inference for the stochastic block model with application to large networks," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 12-31.
    6. Ma, Xiaoke & Gao, Lin & Yong, Xuerong & Fu, Lidong, 2010. "Semi-supervised clustering algorithm for community structure detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 187-197.
    7. Cui, Yaozu & Wang, Xingyuan & Li, Junqiu, 2014. "Detecting overlapping communities in networks using the maximal sub-graph and the clustering coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 85-91.
    8. Cui, Yaozu & Wang, Xingyuan & Eustace, Justine, 2014. "Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 198-207.
    9. Wang, Xingyuan & Li, Junqiu, 2013. "Detecting communities by the core-vertex and intimate degree in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2555-2563.
    10. Li, Junqiu & Wang, Xingyuan & Cui, Yaozu, 2014. "Uncovering the overlapping community structure of complex networks by maximal cliques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 398-406.
    11. Jayanth R. Banavar & Amos Maritan & Andrea Rinaldo, 1999. "Size and form in efficient transportation networks," Nature, Nature, vol. 399(6732), pages 130-132, May.
    12. Liu, Dong & Liu, Xiao & Wang, Wenjun & Bai, Hongyu, 2014. "Semi-supervised community detection based on discrete potential theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 173-182.
    13. Li, Junqiu & Wang, Xingyuan & Eustace, Justine, 2013. "Detecting overlapping communities by seed community in weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6125-6134.
    14. Wang, Xingyuan & Zhao, Tianfang & Qin, Xiaomeng, 2016. "Model of epidemic control based on quarantine and message delivery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 168-178.
    15. Cui, Yaozu & Wang, Xingyuan, 2016. "Detecting one-mode communities in bipartite networks by bipartite clustering triangular," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 307-315.
    16. Liang Yang & Meng Ge & Di Jin & Dongxiao He & Huazhu Fu & Jing Wang & Xiaochun Cao, 2017. "Exploring the roles of cannot-link constraint in community detection via Multi-variance Mixed Gaussian Generative Model," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
    17. Cui, Yaozu & Wang, Xingyuan, 2014. "Uncovering overlapping community structures by the key bi-community and intimate degree in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 7-14.
    18. Wang, Xingyuan & Cao, Jianye & Li, Rui & Zhao, Tianfang, 2017. "A preferential attachment strategy for connectivity link addition strategy in improving the robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 412-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihe Zhou & Bo Tian, 2019. "Research on Community Detection of Online Social Network Members Based on the Sparse Subspace Clustering Approach," Future Internet, MDPI, vol. 11(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tao & Wang, Hongjue & Wang, Xiaoxia, 2015. "A novel cosine distance for detecting communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 21-35.
    2. Zhang, Hong, 2015. "Moderate tolerance promotes tag-mediated cooperation in spatial Prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 52-61.
    3. Shang, Ronghua & Luo, Shuang & Li, Yangyang & Jiao, Licheng & Stolkin, Rustam, 2015. "Large-scale community detection based on node membership grade and sub-communities integration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 279-294.
    4. Wang, Hongjue, 2019. "An universal algorithm for source location in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 620-630.
    5. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.
    6. Yang, Guizhen & Qi, Xiaogang & Liu, Lifang, 2020. "Research on network robustness based on different deliberate attack methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Jiang, Xurui & Wen, Xiangxi & Wu, Minggong & Song, Min & Tu, Congliang, 2019. "A complex network analysis approach for identifying air traffic congestion based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 364-381.
    8. Zhang, Xiaolei & Ren, Yibin & Huang, Baoxiang & Han, Yong, 2018. "Analysis of time-varying characteristics of bus weighted complex network in Qingdao based on boarding passenger volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 376-394.
    9. Li, Ruimeng & Yang, Naiding & Zhang, Yanlu & Liu, Hui & Zhang, Mingzhen, 2021. "Impacts of module–module aligned patterns on risk cascading propagation in complex product development (CPD) interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    10. Wang, Tao & Yin, Liyan & Wang, Xiaoxia, 2018. "A community detection method based on local similarity and degree clustering information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1344-1354.
    11. Qi, Xiaogang & Yang, Guizhen & Liu, Lifang, 2020. "Robustness analysis of the networks in cascading failures with controllable parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    12. Wu, Jianshe & Zhang, Long & Li, Yong & Jiao, Yang, 2016. "Partition signed social networks via clustering dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 568-582.
    13. Li, Yafang & Jia, Caiyan & Li, Jianqiang & Wang, Xiaoyang & Yu, Jian, 2018. "Enhanced semi-supervised community detection with active node and link selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 219-232.
    14. Wang, Tao & Chen, Shanshan & Wang, Xiaoxia & Wang, Jinfang, 2020. "Label propagation algorithm based on node importance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    15. Yu, Wei & Jiao, Pengfei & Wang, Wenjun & Yu, Yang & Chen, Xue & Pan, Lin, 2019. "A novel evolutionary clustering via the first-order varying information for dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 507-520.
    16. Zheng, Xiaolong & Zeng, Daniel & Li, Huiqian & Wang, Feiyue, 2008. "Analyzing open-source software systems as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6190-6200.
    17. Wang, Tao & Cheng, Heming & Wang, Xiaoxia, 2020. "A link addition method based on uniformity of node degree in interdependent power grids and communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    18. Li, Hui & Zhao, Hai & Cai, Wei & Xu, Jiu-Qiang & Ai, Jun, 2013. "A modular attachment mechanism for software network evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2025-2037.
    19. Chen, Chunchun & Zhu, Wenjie & Peng, Bo, 2022. "Differentiated graph regularized non-negative matrix factorization for semi-supervised community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    20. Wang, Benyu & Gu, Yijun & Zheng, Diwen, 2022. "Community detection in error-prone environments based on particle cooperation and competition with distance dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:523-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.