IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v499y2018icp481-489.html
   My bibliography  Save this article

Preferential selection based on strategy persistence and memory promotes cooperation in evolutionary prisoner’s dilemma games

Author

Listed:
  • Liu, Yuanming
  • Huang, Changwei
  • Dai, Qionglin

Abstract

Strategy imitation plays a crucial role in evolutionary dynamics when we investigate the spontaneous emergence of cooperation under the framework of evolutionary game theory. Generally, when an individual updates his strategy, he needs to choose a role model whom he will learn from. In previous studies, individuals choose role models randomly from their neighbors. In recent works, researchers have considered that individuals choose role models according to neighbors’ attractiveness characterized by the present network topology or historical payoffs. Here, we associate an individual’s attractiveness with the strategy persistence, which characterizes how frequently he changes his strategy. We introduce a preferential parameter α to describe the nonlinear correlation between the selection probability and the strategy persistence and the memory length of individuals M into the evolutionary games. We investigate the effects of α and M on cooperation. Our results show that cooperation could be promoted when α>0 and at the same time M>1, which corresponds to the situation that individuals are inclined to select their neighbors with relatively higher persistence levels during the evolution. Moreover, we find that the cooperation level could reach the maximum at an optimal memory length when α>0. Our work sheds light on how to promote cooperation through preferential selection based on strategy persistence and a limited memory length.

Suggested Citation

  • Liu, Yuanming & Huang, Changwei & Dai, Qionglin, 2018. "Preferential selection based on strategy persistence and memory promotes cooperation in evolutionary prisoner’s dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 481-489.
  • Handle: RePEc:eee:phsmap:v:499:y:2018:i:c:p:481-489
    DOI: 10.1016/j.physa.2018.02.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118301031
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Wenxing & Feng, Weiying & Lü, Chen & Fan, Suohai, 2017. "Memory-based prisoner’s dilemma game with conditional selection on networks," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 31-37.
    2. Luo, Chao & Zhang, Xiaolin & Liu, Hong & Shao, Rui, 2016. "Cooperation in memory-based prisoner’s dilemma game on interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 560-569.
    3. Oliver P. Hauser & David G. Rand & Alexander Peysakhovich & Martin A. Nowak, 2014. "Cooperating with the future," Nature, Nature, vol. 511(7508), pages 220-223, July.
    4. Meng, Xiaokun & Sun, Shiwen & Li, Xiaoxuan & Wang, Li & Xia, Chengyi & Sun, Junqing, 2016. "Interdependency enriches the spatial reciprocity in prisoner’s dilemma game on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 388-396.
    5. Zhi-Hai Rong & Qian Zhao & Zhi-Xi Wu & Tao Zhou & Chi Kong Tse, 2016. "Proper aspiration level promotes generous behavior in the spatial prisoner’s dilemma game," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(7), pages 1-7, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Dongqi & Shuai, Xuanyue & Pan, Qiuhui & Li, Jingye & Lan, Xiaolong & He, Mingfeng, 2020. "Long deliberation times promote cooperation in the prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Liu, Danna & Huang, Changwei & Dai, Qionglin & Li, Haihong, 2019. "Positive correlation between strategy persistence and teaching ability promotes cooperation in evolutionary Prisoner’s Dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 267-274.
    3. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    4. Pi, Bin & Li, Yuhan & Feng, Minyu, 2022. "An evolutionary game with conformists and profiteers regarding the memory mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    5. Lin, Jingyan & Huang, Changwei & Dai, Qionglin & Yang, Junzhong, 2020. "Evolutionary game dynamics of combining the payoff-driven and conformity-driven update rules," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Liu, Chengwei & Wang, Juan & Li, Xiaopeng & Xia, Chengyi, 2020. "The link weight adjustment considering historical strategy promotes the cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    7. Bi, Yan & Yang, Hui, 2023. "Based on reputation consistent strategy times promotes cooperation in spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    8. Deng, Yunsheng & Zhang, Jihui, 2021. "Memory-based prisoner's dilemma game with history optimal strategy learning promotes cooperation on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    9. Yang, Kai & Huang, Changwei & Dai, Qionglin & Yang, Junzhong, 2018. "The effects of attribute persistence on cooperation in evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 23-28.
    10. Deng, Yunsheng & Zhang, Jihui, 2021. "The role of the preferred neighbor with the expected payoff on cooperation in spatial public goods game under optimal strategy selection mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    11. Zhao, Jinqiu & Luo, Chao, 2019. "The effect of preferential teaching and memory on cooperation clusters in interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    12. Jiao, Yuhang & Chen, Tong & Chen, Qiao, 2020. "The impact of expressing willingness to cooperate on cooperation in public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    14. Pu, Jia & Jia, Tao & Li, Ya, 2019. "Effects of time cost on the evolution of cooperation in snowdrift game," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 146-151.
    15. Xie, Kai & Liu, Xingwen & Chen, Hao & Yang, Jun, 2022. "Preferential selection and expected payoff drive cooperation in spatial voluntary public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Jiezhou & Pan, Qiuhui & Zhu, Wenqiang & He, Mingfeng, 2023. "The influence of own historical information and environmental historical information on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    2. Lu, Wen & Liang, Shu, 2023. "Direct emotional interaction in prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    3. Li, Jiaqi & Dang, Jianwu & Zhang, Jianlei, 2020. "Length of information-based bidirectional choice in spatial prisoner’s dilemma," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    4. Allen, James M. & Hoyle, Rebecca B., 2017. "Asynchronous updates can promote the evolution of cooperation on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 607-619.
    5. Xu, Hedong & Tian, Cunzhi & Ye, Wenxing & Fan, Suohai, 2018. "Effects of investors’ power correlations in the power-based game on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 424-432.
    6. Li, Jiaqi & Zhang, Jianlei & Chen, Zengqiang & Liu, Qun, 2023. "Aspiration drives adaptive switching between two different payoff matrices," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    7. Xu, Hedong & Tian, Cunzhi & Xiao, Xinrong & Fan, Suohai, 2018. "Evolutionary investors’ power-based game on networks," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 125-133.
    8. Deng, Yunsheng & Zhang, Jihui, 2021. "Memory-based prisoner's dilemma game with history optimal strategy learning promotes cooperation on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    9. Wang, Jianwei & Wang, Rong & Yu, Fengyuan & Wang, Ziwei & Li, Qiaochu, 2020. "Learning continuous and consistent strategy promotes cooperation in prisoner’s dilemma game with mixed strategy," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    10. Zhang, Jing & Li, Zhao & Zhang, Jiqiang & Ma, Lin & Zheng, Guozhong & Chen, Li, 2023. "Emergence of oscillatory cooperation in a population with incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    11. Xu, Hedong & Fan, Suohai & Tian, Cunzhi & Xiao, Xinrong, 2019. "Evolutionary investor sharing game on networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 138-145.
    12. Shu, Feng & Li, Min & Liu, Xingwen, 2019. "Memory mechanism with weighting promotes cooperation in the evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 17-24.
    13. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    14. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    15. Shu, Feng & Liu, Yaojun & Liu, Xingwen & Zhou, Xiaobing, 2019. "Memory-based conformity enhances cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 480-490.
    16. Ye, Wenxing & Feng, Weiying & Lü, Chen & Fan, Suohai, 2017. "Memory-based prisoner’s dilemma game with conditional selection on networks," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 31-37.
    17. Deng, Yunsheng & Zhang, Jihui, 2021. "The role of the preferred neighbor with the expected payoff on cooperation in spatial public goods game under optimal strategy selection mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    18. Xu, Hedong & Fan, Suohai & Tian, Cunzhi & Xiao, Xinrong, 2019. "Effect of strategy-assortativity on investor sharing games in the market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 211-225.
    19. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    20. Helena Fornwagner & Oliver P. Hauser, 2022. "Climate Action for (My) Children," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(1), pages 95-130, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:499:y:2018:i:c:p:481-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.