IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v483y2017icp330-336.html
   My bibliography  Save this article

Giant hub Src and Syk tyrosine kinase thermodynamic profiles recapitulate evolution

Author

Listed:
  • Phillips, J.C.

Abstract

Thermodynamic scaling theory, previously applied mainly to small proteins, here analyzes quantitative evolution of the titled functional network giant hub enzymes. The broad domain structure identified homologically is confirmed hydropathically using amino acid sequences only. The most surprising results concern the evolution of the tyrosine kinase globular surface roughness from avians to mammals, which is first order, compared to the evolution within mammals from rodents to humans, which is second order. The mystery of the unique amide terminal region of proto oncogene tyrosine protein kinase is resolved by the discovery there of a rare hydroneutral septad targeting cluster, which is paralleled by an equally rare octad catalytic cluster in tyrosine kinase in humans and a few other species (cat and dog). These results, which go far towards explaining why these proteins are among the largest giant hubs in protein interaction networks, use no adjustable parameters.

Suggested Citation

  • Phillips, J.C., 2017. "Giant hub Src and Syk tyrosine kinase thermodynamic profiles recapitulate evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 330-336.
  • Handle: RePEc:eee:phsmap:v:483:y:2017:i:c:p:330-336
    DOI: 10.1016/j.physa.2017.04.180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117304909
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phillips, J.C., 2014. "Fractals and self-organized criticality in anti-inflammatory drugs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 538-543.
    2. Sachdeva, Vedant & Phillips, James C., 2016. "Oxygen channels and fractal wave–particle duality in the evolution of myoglobin and neuroglobin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 1-11.
    3. Phillips, J.C., 2016. "Autoantibody recognition mechanisms of p53 epitopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 162-170.
    4. Phillips, J.C., 2014. "Fractals and self-organized criticality in proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 440-448.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, J.C., 2017. "Hidden thermodynamic information in protein amino acid mutation tables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 676-680.
    2. Phillips, J.C., 2016. "Bioinformatic scaling of allosteric interactions in biomedical isozymes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 289-294.
    3. Phillips, J.C., 2016. "Autoantibody recognition mechanisms of p53 epitopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 162-170.
    4. Sachdeva, Vedant & Phillips, James C., 2016. "Oxygen channels and fractal wave–particle duality in the evolution of myoglobin and neuroglobin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 1-11.
    5. Phillips, J.C., 2021. "Synchronized attachment and the Darwinian evolution of coronaviruses CoV-1 and CoV-2," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    6. Phillips, J.C., 2017. "Autoantibody recognition mechanisms of MUC1," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 244-249.
    7. Xu, Xiu-Lian & Shi, Jin-Xuan & Wang, Jun & Li, Wenfei, 2021. "Long-range correlation and critical fluctuations in coevolution networks of protein sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    8. Phillips, J.C. & Moret, Marcelo A. & Zebende, Gilney F. & Chow, Carson C., 2022. "Phase transitions may explain why SARS-CoV-2 spreads so fast and why new variants are spreading faster," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    9. Rostamian, Hossein & Lotfollahi, Mohammad Nader, 2020. "Statistical modeling of aspirin solubility in organic solvents by Response Surface Methodology and Artificial Neural Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Allan, Douglas C. & Phillips, J.C., 2017. "Evolution of the ubiquitin-activating enzyme Uba1 (E1)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 456-461.
    11. Lahmiri, Salim, 2016. "Clustering of Casablanca stock market based on hurst exponent estimates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 310-318.
    12. Phillips, J.C., 2015. "Similarity is not enough: Tipping points of Ebola Zaire mortalities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 277-281.
    13. Filho, A.S. Nascimento & Araújo, M.L.V. & Miranda, J.G.V. & Murari, T.B. & Saba, H. & Moret, M.A., 2018. "Self-affinity and self-organized criticality applied to the relationship between the economic arrangements and the dengue fever spread in Bahia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 619-628.
    14. Voorhoeve, Niels & Allan, Douglas C. & Moret, M.A. & Zebende, G.F. & Phillips, J.C., 2018. "Why human milk is more nutritious than cow milk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 302-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:483:y:2017:i:c:p:330-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.