IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v472y2017icp86-93.html
   My bibliography  Save this article

A physical model for dementia

Author

Listed:
  • Sotolongo-Costa, O.
  • Gaggero-Sager, L.M.
  • Becker, J.T.
  • Maestu, F.
  • Sotolongo-Grau, O.

Abstract

Aging associated brain decline often result in some kind of dementia. Even when this is a complex brain disorder a physical model can be used in order to describe its general behavior. A probabilistic model for the development of dementia is obtained and fitted to some experimental data obtained from the Alzheimer’s Disease Neuroimaging Initiative. It is explained how dementia appears as a consequence of aging and why it is irreversible.

Suggested Citation

  • Sotolongo-Costa, O. & Gaggero-Sager, L.M. & Becker, J.T. & Maestu, F. & Sotolongo-Grau, O., 2017. "A physical model for dementia," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 86-93.
  • Handle: RePEc:eee:phsmap:v:472:y:2017:i:c:p:86-93
    DOI: 10.1016/j.physa.2016.12.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116310731
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.12.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grasman, Raoul & van der Maas, Han L.J. & Wagenmakers, Eric-Jan, 2009. "Fitting the Cusp Catastrophe in R: A cusp Package Primer," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i08).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jozef Barunik & Jiri Kukacka, 2015. "Realizing stock market crashes: stochastic cusp catastrophe model of returns under time-varying volatility," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 959-973, June.
    2. Cobb, Loren, 1980. "Estimation Theory for the Cusp Catastrophe Model," MPRA Paper 37548, University Library of Munich, Germany, revised 05 Jun 2010.
    3. Mohamed M. Mostafa, 2020. "Catastrophe Theory Predicts International Concern for Global Warming," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 709-731, September.
    4. Angélique O J Cramer & Claudia D van Borkulo & Erik J Giltay & Han L J van der Maas & Kenneth S Kendler & Marten Scheffer & Denny Borsboom, 2016. "Major Depression as a Complex Dynamic System," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-20, December.
    5. Wang, J., 2015. "Can a stochastic cusp catastrophe model explain housing market crashes?," CeNDEF Working Papers 15-12, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    6. Céline Bricteux & Jose Navarro & Lucía Ceja & Guillaume Fuerst, 2017. "Interest as a Moderator in the Relationship Between Challenge/Skills Balance and Flow at Work: An Analysis at Within-Individual Level," Journal of Happiness Studies, Springer, vol. 18(3), pages 861-880, June.
    7. Bełej Mirosław & Kulesza Sławomir, 2012. "Modeling the Real Estate Prices in Olsztyn under Instability Conditions," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 61-72, January.
    8. Ding-Geng Chen & Haipeng Gao & Chuanshu Ji, 2021. "Bayesian Inference for Stochastic Cusp Catastrophe Model with Partially Observed Data," Mathematics, MDPI, vol. 9(24), pages 1-9, December.
    9. Diks, Cees & Wang, Juanxi, 2016. "Can a stochastic cusp catastrophe model explain housing market crashes?," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 68-88.
    10. Tim Loossens & Merijn Mestdagh & Egon Dejonckheere & Peter Kuppens & Francis Tuerlinckx & Stijn Verdonck, 2020. "The Affective Ising Model: A computational account of human affect dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-27, May.
    11. Jiri Kukacka & Ladislav Kristoufek, 2023. "Fundamental and speculative components of the cryptocurrency pricing dynamics," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    12. Ding-Geng Chen & Xinguang Chen, 2017. "Cusp Catastrophe Regression and Its Application in Public Health and Behavioral Research," IJERPH, MDPI, vol. 14(10), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:472:y:2017:i:c:p:86-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.