IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v419y2015icp122-127.html
   My bibliography  Save this article

An autocatalytic network model for stock markets

Author

Listed:
  • Caetano, Marco Antonio Leonel
  • Yoneyama, Takashi

Abstract

The stock prices of companies with businesses that are closely related within a specific sector of economy might exhibit movement patterns and correlations in their dynamics. The idea in this work is to use the concept of autocatalytic network to model such correlations and patterns in the trends exhibited by the expected returns. The trends are expressed in terms of positive or negative returns within each fixed time interval. The time series derived from these trends is then used to represent the movement patterns by a probabilistic boolean network with transitions modeled as an autocatalytic network. The proposed method might be of value in short term forecasting and identification of dependencies. The method is illustrated with a case study based on four stocks of companies in the field of natural resource and technology.

Suggested Citation

  • Caetano, Marco Antonio Leonel & Yoneyama, Takashi, 2015. "An autocatalytic network model for stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 122-127.
  • Handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:122-127
    DOI: 10.1016/j.physa.2014.10.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114008905
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.10.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Onnela, J.-P. & Chakraborti, A. & Kaski, K. & Kertész, J., 2003. "Dynamic asset trees and Black Monday," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 247-252.
    2. Stefania Vitali & James B Glattfelder & Stefano Battiston, 2011. "The Network of Global Corporate Control," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-6, October.
    3. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2004. "Error and attack tolerance of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 388-394.
    4. Han N. Ozsoylev & Johan Walden & M. Deniz Yavuz & Recep Bildik, 2014. "Investor Networks in the Stock Market," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1323-1366.
    5. Caetano, Marco Antonio Leonel & Yoneyama, Takashi, 2012. "A method for detection of abrupt changes in the financial market combining wavelet decomposition and correlation graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4877-4882.
    6. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    7. Nier, Erlend & Yang, Jing & Yorulmazer, Tanju & Alentorn, Amadeo, 2007. "Network models and financial stability," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2033-2060, June.
    8. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    9. Oleg Shirokikh & Grigory Pastukhov & Vladimir Boginski & Sergiy Butenko, 2013. "Computational study of the US stock market evolution: a rank correlation-based network model," Computational Management Science, Springer, vol. 10(2), pages 81-103, June.
    10. AfDB AfDB, 2008. "List of Working Paper Series (1 - 95)," Working Paper Series 356, African Development Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartoš, Erik & Pinčák, Richard, 2017. "Identification of market trends with string and D2-brane maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 57-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Emmert-Streib & Aliyu Musa & Kestutis Baltakys & Juho Kanniainen & Shailesh Tripathi & Olli Yli-Harja & Herbert Jodlbauer & Matthias Dehmer, 2017. "Computational Analysis of the structural properties of Economic and Financial Networks," Papers 1710.04455, arXiv.org.
    2. Caetano, Marco Antonio Leonel & Yoneyama, Takashi, 2015. "Boolean network representation of contagion dynamics during a financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 1-6.
    3. Caetano, Marco Antonio Leonel & Yoneyama, Takashi, 2015. "The effects of node exclusion on the centrality measures in graph models of interacting economic agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 216-223.
    4. Tinic, Murat & Sensoy, Ahmet & Demir, Muge & Nguyen, Duc Khuong, 2020. "Broker Network Connectivity and the Cross-Section of Expected Stock Returns," MPRA Paper 104719, University Library of Munich, Germany.
    5. Annika Westphal, 2015. "Systemic Risk in the European Union: A Network Approach to Banks’ Sovereign Debt Exposures," IJFS, MDPI, vol. 3(3), pages 1-36, July.
    6. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    7. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    8. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2016. "Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    9. Yan Zhang & Antonios Garas & Frank Schweitzer, 2019. "Control Contribution Identifies Top Driver Nodes In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, December.
    10. Yangguang Zhu & Feng Yang & Wuyi Ye, 2018. "Financial contagion behavior analysis based on complex network approach," Annals of Operations Research, Springer, vol. 268(1), pages 93-111, September.
    11. Vitali, Stefania & Battiston, Stefano & Gallegati, Mauro, 2016. "Financial fragility and distress propagation in a network of regions," Journal of Economic Dynamics and Control, Elsevier, vol. 62(C), pages 56-75.
    12. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1121-1141.
    13. Prasanna Gai & Sujit Kapadia, 2011. "A Network Model of Super-Systemic Crises," Central Banking, Analysis, and Economic Policies Book Series, in: Rodrigo Alfaro (ed.),Financial Stability, Monetary Policy, and Central Banking, edition 1, volume 15, chapter 13, pages 411-432, Central Bank of Chile.
    14. Andreas Joseph & Stephan Joseph & Guanrong Chen, 2013. "Cross-border Portfolio Investment Networks and Indicators for Financial Crises," Papers 1306.0215, arXiv.org, revised Jan 2014.
    15. Qingmin Hao & Jim Huangnan Shen & Chien-Chiang Lee, 2023. "Risk contagion of bank-firm loan network: evidence from China," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 13(2), pages 341-361, June.
    16. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    17. Christos Ellinas & Neil Allan & Anders Johansson, 2016. "Exploring Structural Patterns Across Evolved and Designed Systems: A Network Perspective," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 179-192, May.
    18. Hiroyasu Inoue, 2015. "Analyses of Aggregate Fluctuations of Firm Network Based on the Self-Organized Criticality Model," Papers 1512.05066, arXiv.org, revised Apr 2016.
    19. Noah J Cowan & Erick J Chastain & Daril A Vilhena & James S Freudenberg & Carl T Bergstrom, 2012. "Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-5, June.
    20. Michel Alexandre & Thiago Christiano Silva & Colm Connaughton & Francisco A. Rodrigues, 2021. "The Role of (non-)Topological Features as Drivers of Systemic Risk: a machine learning approach," Working Papers Series 556, Central Bank of Brazil, Research Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:122-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.