IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Formulation of the Hellmann–Feynman theorem for the “second choice” version of Tsallis’ thermostatistics

Listed author(s):
  • Rastegin, Alexey E.
Registered author(s):

    An approach to formulating the Hellmann–Feynman theorem within the “second choice” formalism of non-extensive statistical mechanics is considered. For the state of thermal equilibrium, we derive a relation of Hellmann–Feynman type between the derivative of the non-extensive free energy with respect to the external parameter and the quantum statistical q-average of the derivative of the Hamilton operator. We also give a proper extension for an arbitrary observable commuting with the Hamiltonian. Some reasons for the usefulness of new formulas are discussed.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 392 (2013)
    Issue (Month): 1 ()
    Pages: 103-110

    in new window

    Handle: RePEc:eee:phsmap:v:392:y:2013:i:1:p:103-110
    DOI: 10.1016/j.physa.2012.08.010
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. R. K. Niven, 2009. "Combinatorial entropies and statistics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(1), pages 49-63, July.
    2. Toral, Raúl & Salazar, Rafael, 2002. "Ensemble equivalence for non-extensive thermostatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 305(1), pages 52-57.
    3. Ferri, G.L. & Martínez, S. & Plastino, A., 2005. "The role of constraints in Tsallis' nonextensive treatment revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 205-220.
    4. Tsallis, Constantino & Mendes, RenioS. & Plastino, A.R., 1998. "The role of constraints within generalized nonextensive statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 534-554.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:1:p:103-110. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.