IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61475-w.html
   My bibliography  Save this article

Explosive neural networks via higher-order interactions in curved statistical manifolds

Author

Listed:
  • Miguel Aguilera

    (BCAM – Basque Center for Applied Mathematics
    Basque Foundation for Science)

  • Pablo A. Morales

    (Araya Inc.
    Imperial College London)

  • Fernando E. Rosas

    (University of Sussex
    Imperial College London
    University of Oxford
    Principles of Intelligent Behavior in Biological and Social Systems (PIBBSS))

  • Hideaki Shimazaki

    (Kyoto University
    Hokkaido University)

Abstract

Higher-order interactions underlie complex phenomena in systems such as biological and artificial neural networks, but their study is challenging due to the scarcity of tractable models. By leveraging a generalisation of the maximum entropy principle, we introduce curved neural networks as a class of models with a limited number of parameters that are particularly well-suited for studying higher-order phenomena. Through exact mean-field descriptions, we show that these curved neural networks implement a self-regulating annealing process that can accelerate memory retrieval, leading to explosive order-disorder phase transitions with multi-stability and hysteresis effects. Moreover, by analytically exploring their memory-retrieval capacity using the replica trick, we demonstrate that these networks can enhance memory capacity and robustness of retrieval over classical associative-memory networks. Overall, the proposed framework provides parsimonious models amenable to analytical study, revealing higher-order phenomena in complex networks.

Suggested Citation

  • Miguel Aguilera & Pablo A. Morales & Fernando E. Rosas & Hideaki Shimazaki, 2025. "Explosive neural networks via higher-order interactions in curved statistical manifolds," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61475-w
    DOI: 10.1038/s41467-025-61475-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61475-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61475-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Agliari, Elena & Albanese, Linda & Alemanno, Francesco & Alessandrelli, Andrea & Barra, Adriano & Giannotti, Fosca & Lotito, Daniele & Pedreschi, Dino, 2023. "Dense Hebbian neural networks: A replica symmetric picture of supervised learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Agliari, Elena & Albanese, Linda & Alemanno, Francesco & Alessandrelli, Andrea & Barra, Adriano & Giannotti, Fosca & Lotito, Daniele & Pedreschi, Dino, 2023. "Dense Hebbian neural networks: A replica symmetric picture of unsupervised learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    3. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Tsallis, Constantino & Mendes, RenioS. & Plastino, A.R., 1998. "The role of constraints within generalized nonextensive statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 534-554.
    5. Jauregui, M. & Zunino, L. & Lenzi, E.K. & Mendes, R.S. & Ribeiro, H.V., 2018. "Characterization of time series via Rényi complexity–entropy curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 74-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Centonze, Martino Salomone & Kanter, Ido & Barra, Adriano, 2024. "Statistical mechanics of learning via reverberation in bidirectional associative memories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Federico Malizia & Santiago Lamata-Otín & Mattia Frasca & Vito Latora & Jesús Gómez-Gardeñes, 2025. "Hyperedge overlap drives explosive transitions in systems with higher-order interactions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Naif Alotaibi & A. S. Al-Moisheer & Ibrahim Elbatal & Mansour Shrahili & Mohammed Elgarhy & Ehab M. Almetwally, 2023. "Half Logistic Inverted Nadarajah–Haghighi Distribution under Ranked Set Sampling with Applications," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    4. Gong, Chang & Li, Jichao & Qian, Liwei & Li, Siwei & Yang, Zhiwei & Yang, Kewei, 2024. "HMSL: Source localization based on higher-order Markov propagation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Daniel Reisinger & Fabian Tschofenig & Raven Adam & Marie Lisa Kogler & Manfred Füllsack & Fabian Veider & Georg Jäger, 2024. "Patterns of stability in complex contagions," Journal of Computational Social Science, Springer, vol. 7(2), pages 1895-1911, October.
    6. Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Wavelet entropy and complexity–entropy curves approach for energy commodity price predictability amid the transition to alternative energy sources," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    7. Guilherme Ferraz de Arruda & Giovanni Petri & Pablo Martin Rodriguez & Yamir Moreno, 2023. "Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    9. Deeb, Omar El, 2023. "Entropic spatial auto-correlation of voter uncertainty and voter transitions in parliamentary elections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    10. Keliger, Dániel & Horváth, Illés, 2023. "Accuracy criterion for mean field approximations of Markov processes on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    11. Wang, Xuhui & Wu, Jiao & Yang, Zheng & Xu, Kesheng & Wang, Zhengling & Zheng, Muhua, 2024. "The correlation between independent edge and triangle degrees promote the explosive information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    12. Ou, Congjie & Huang, Zhifu & Chen, Jincan & El Kaabouchi, A. & Nivanen, L. & Le Méhauté, A. & Wang, Qiuping A., 2009. "A basic problem in the correlations between statistics and thermodynamics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2313-2318.
    13. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    14. Meyer-Gohde, Alexander, 2019. "Generalized entropy and model uncertainty," Journal of Economic Theory, Elsevier, vol. 183(C), pages 312-343.
    15. Alves, L.G.A. & Ribeiro, H.V. & Santos, M.A.F. & Mendes, R.S. & Lenzi, E.K., 2015. "Solutions for a q-generalized Schrödinger equation of entangled interacting particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 35-44.
    16. Mock, Andrea & Volić, Ismar, 2021. "Political structures and the topology of simplicial complexes," Mathematical Social Sciences, Elsevier, vol. 114(C), pages 39-57.
    17. Li, Ming & Huo, Liang'an, 2025. "Effect of time-varying validity of individual interaction on co-evolution of awareness and epidemics in a multiplex high-order network," Applied Mathematics and Computation, Elsevier, vol. 499(C).
    18. Zhang, Zehui & Zhu, Kangci & Wang, Fang, 2025. "Indirect information propagation model with time-delay effect on multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    19. Almiala, Into & Aalto, Henrik & Kuikka, Vesa, 2023. "Influence spreading model for partial breakthrough effects on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. Krishnagopal, Sanjukta & Bianconi, Ginestra, 2023. "Topology and dynamics of higher-order multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61475-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.