IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i10p2426-2433.html
   My bibliography  Save this article

Characterization of fish schooling behavior with different numbers of Medaka (Oryzias latipes) and goldfish (Carassius auratus) using a Hidden Markov Model

Author

Listed:
  • Jeon, Wonju
  • Kang, Seung-Ho
  • Leem, Joo-Baek
  • Lee, Sang-Hee

Abstract

Fish that swim in schools benefit from increased vigilance, and improved predator recognition and assessment. Fish school size varies according to species and environmental conditions. In this study, we present a Hidden Markov Model (HMM) that we use to characterize fish schooling behavior in different sized schools, and explore how school size affects schooling behavior. We recorded the schooling behavior of Medaka (Oryzias latipes) and goldfish (Carassius auratus) using different numbers of individual fish (10–40), in a circular aquarium. Eight to ten 3 s video clips were extracted from the recordings for each group size. Schooling behavior was characterized by three variables: linear speed, angular speed, and Pearson coefficient. The values of the variables were categorized into two events each for linear and angular speed (high and low), and three events for the Pearson coefficient (high, medium, and low). Schooling behavior was then described as a sequence of 12 events (2×2×3), which was input to an HMM as data for training the model. Comparisons of model output with observations of actual schooling behavior demonstrated that the HMM was successful in characterizing fish schooling behavior. We briefly discuss possible applications of the HMM for recognition of fish species in a school, and for developing bio-monitoring systems to determine water quality.

Suggested Citation

  • Jeon, Wonju & Kang, Seung-Ho & Leem, Joo-Baek & Lee, Sang-Hee, 2013. "Characterization of fish schooling behavior with different numbers of Medaka (Oryzias latipes) and goldfish (Carassius auratus) using a Hidden Markov Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2426-2433.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:10:p:2426-2433
    DOI: 10.1016/j.physa.2013.01.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113001404
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.01.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Hungsoo & Nguyen, Tuyen Van & Uehara, Takashi & Heo, Muyoung & Chon, Tae-Soo, 2015. "Zebrafish (Danio rerio) movement in addressing stress to conflicting stimuli, foods and predators," Ecological Modelling, Elsevier, vol. 306(C), pages 257-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:10:p:2426-2433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.