IDEAS home Printed from
   My bibliography  Save this article

Thermal entangled quantum heat engine


  • He, Xian
  • He, Jizhou
  • Zheng, Jie


Based on a two-qubit Heisenberg XY model, we construct a four-level entangled quantum heat engine (QHE). It is an interesting quantum Otto cycle where the exchange constant is fixed and only the magnetic field is varied during the adiabatic steps. The expressions for several thermodynamic quantities such as the heat transferred, the work and the efficiency are derived. Moreover, the influence of the entanglement on the thermodynamic quantities is investigated numerically. Several interesting features of the variation of the heat transferred, the work and the efficiency with the concurrences of the thermal entanglement of different thermal equilibrium states are obtained. Finally, we discussed the maximum efficiency of the QHE.

Suggested Citation

  • He, Xian & He, Jizhou & Zheng, Jie, 2012. "Thermal entangled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6594-6600.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6594-6600
    DOI: 10.1016/j.physa.2012.07.050

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H. & Ahmad-Yazid, A., 2012. "A review on electricity generation based on biomass residue in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5879-5889.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6594-6600. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.