IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i6p981-989.html
   My bibliography  Save this article

Scaling characteristics of ocean wave height time series

Author

Listed:
  • Ozger, Mehmet

Abstract

Fluctuations in the significant wave height can be quantified by using scaling statistics. In this paper, the scaling properties of the significant wave height were explored by using a large data set of hourly series from 25 monitoring stations located off the west coast of the US. Detrended fluctuation analysis (DFA) was used to investigate the scaling properties of the series. DFA is a robust technique that can be used to detect long-range correlations in nonstationary time series. The significant wave height data was analyzed by using scales from hourly to monthly. It was found that a common scaling behavior can be observed for all stations. A breakpoint in the scaling region around 4–5 days was apparent. Spectral analysis confirms this result. This breakpoint divided the scaling region into two distinct parts. The first part was for finer scales (up to 4 days) which exhibited Brown noise characteristics, while the second one showed 1/f noise behavior at coarser scales (5 days to 1 month). The first order and the second order DFA (DFA1 and DFA2) were used to check the effect of seasonality. It was found that there were no differences between DFA1 and DFA2 results, indicating that there is no effect of trends in the wave height time series. The resulting scaling coefficients range from 0.696 to 0.890 indicating that the wave height exhibits long-term persistence. There were no coherent spatial variations in the scaling coefficients.

Suggested Citation

  • Ozger, Mehmet, 2011. "Scaling characteristics of ocean wave height time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 981-989.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:6:p:981-989
    DOI: 10.1016/j.physa.2010.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110009830
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Telesca, Luciano & Lovallo, Michele, 2010. "Long-range dependence in tree-ring width time series of Austrocedrus Chilensis revealed by means of the detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4096-4104.
    2. Zheng, Hongyang & Song, Weiguo & Wang, Jian, 2008. "Detrended fluctuation analysis of forest fires and related weather parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2091-2099.
    3. Zhang, Qiang & Xu, Chong-Yu & Yu, Zuguo & Liu, Chun-Ling & Chen, Yongqin David, 2009. "Multifractal analysis of streamflow records of the East River basin (Pearl River), China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 927-934.
    4. Gu, Rongbao & Chen, Hongtao & Wang, Yudong, 2010. "Multifractal analysis on international crude oil markets based on the multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2805-2815.
    5. Koscielny-Bunde, Eva & Bunde, Armin & Havlin, Shlomo & Goldreich, Yair, 1996. "Analysis of daily temperature fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 231(4), pages 393-396.
    6. Telesca, Luciano & Lovallo, Michele & Lapenna, Vincenzo & Macchiato, Maria, 2007. "Long-range correlations in two-dimensional spatio-temporal seismic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 279-284.
    7. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pushpa Dissanayake & Teresa Flock & Johanna Meier & Philipp Sibbertsen, 2021. "Modelling Short- and Long-Term Dependencies of Clustered High-Threshold Exceedances in Significant Wave Heights," Mathematics, MDPI, vol. 9(21), pages 1-33, November.
    2. Olivares, Felipe & Zunino, Luciano, 2020. "Multiscale dynamics under the lens of permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Telesca, Luciano & Song, Weiguo, 2011. "Time-scaling properties of city fires," Chaos, Solitons & Fractals, Elsevier, vol. 44(7), pages 558-568.
    2. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    3. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    4. Kalamaras, N. & Philippopoulos, K. & Deligiorgi, D. & Tzanis, C.G. & Karvounis, G., 2017. "Multifractal scaling properties of daily air temperature time series," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 38-43.
    5. Gajardo, Gabriel & Kristjanpoller, Werner D. & Minutolo, Marcel, 2018. "Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 195-205.
    6. dos Anjos, Priscilla Sales & da Silva, Antonio Samuel Alves & Stošić, Borko & Stošić, Tatijana, 2015. "Long-term correlations and cross-correlations in wind speed and solar radiation temporal series from Fernando de Noronha Island, Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 90-96.
    7. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    8. Hernandez-Martinez, Eliseo & Velasco-Hernandez, Jorge X. & Perez-Muñoz, Teresa & Alvarez-Ramirez, Jose, 2013. "A DFA approach in well-logs for the identification of facies associations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6015-6024.
    9. Rybski, Diego & Bunde, Armin, 2009. "On the detection of trends in long-term correlated records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1687-1695.
    10. Lu, Feiyu & Yuan, Naiming & Fu, Zuntao & Mao, Jiangyu, 2012. "Universal scaling behaviors of meteorological variables’ volatility and relations with original records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4953-4962.
    11. M. Ghil & Pascal Yiou & Stéphane Hallegatte & B. D. Malamud & P. Naveau & A. Soloviev & P. Friederichs & V. Keilis-Borok & D. Kondrashov & V. Kossobokov & O. Mestre & C. Nicolis & H. W. Rust & P. Sheb, 2011. "Extreme events: dynamics, statistics and prediction," Post-Print hal-00716514, HAL.
    12. Yu, Zu-Guo & Leung, Yee & Chen, Yongqin David & Zhang, Qiang & Anh, Vo & Zhou, Yu, 2014. "Multifractal analyses of daily rainfall time series in Pearl River basin of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 193-202.
    13. Setty, V.A. & Sharma, A.S., 2015. "Characterizing Detrended Fluctuation Analysis of multifractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 698-706.
    14. Martín-Montoya, L.A. & Aranda-Camacho, N.M. & Quimbay, C.J., 2015. "Long-range correlations and trends in Colombian seismic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 124-133.
    15. Zhang, Xiaonei & Zeng, Ming & Meng, Qinghao, 2018. "Multivariate multifractal detrended fluctuation analysis of 3D wind field signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 513-523.
    16. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    18. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    19. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    20. Currenti, Gilda & Negro, Ciro Del & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1921-1929.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:6:p:981-989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.