IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i9p1791-1803.html
   My bibliography  Save this article

An unconditionally gradient stable numerical method for solving the Allen–Cahn equation

Author

Listed:
  • Choi, Jeong-Whan
  • Lee, Hyun Geun
  • Jeong, Darae
  • Kim, Junseok

Abstract

We consider an unconditionally gradient stable scheme for solving the Allen–Cahn equation representing a model for anti-phase domain coarsening in a binary mixture. The continuous problem has a decreasing total energy. We show the same property for the corresponding discrete problem by using eigenvalues of the Hessian matrix of the energy functional. We also show the pointwise boundedness of the numerical solution for the Allen–Cahn equation. We describe various numerical experiments we performed to study properties of the Allen–Cahn equation.

Suggested Citation

  • Choi, Jeong-Whan & Lee, Hyun Geun & Jeong, Darae & Kim, Junseok, 2009. "An unconditionally gradient stable numerical method for solving the Allen–Cahn equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1791-1803.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:9:p:1791-1803
    DOI: 10.1016/j.physa.2009.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710900079X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ham, Seokjun & Kim, Junseok, 2023. "Stability analysis for a maximum principle preserving explicit scheme of the Allen–Cahn equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 453-465.
    2. Xiao, Xufeng & Feng, Xinlong, 2022. "A second-order maximum bound principle preserving operator splitting method for the Allen–Cahn equation with applications in multi-phase systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 36-58.
    3. Junxiang Yang & Yibao Li & Junseok Kim, 2022. "A Correct Benchmark Problem of a Two-Dimensional Droplet Deformation in Simple Shear Flow," Mathematics, MDPI, vol. 10(21), pages 1-10, November.
    4. Lee, Hyun Geun & Lee, June-Yub, 2015. "A second order operator splitting method for Allen–Cahn type equations with nonlinear source terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 24-34.
    5. Chaeyoung Lee & Darae Jeong & Junxiang Yang & Junseok Kim, 2020. "Nonlinear Multigrid Implementation for the Two-Dimensional Cahn–Hilliard Equation," Mathematics, MDPI, vol. 8(1), pages 1-23, January.
    6. Uzunca, Murat & Karasözen, Bülent, 2023. "Linearly implicit methods for Allen-Cahn equation," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    7. Choi, Yongho & Jeong, Darae & Kim, Junseok, 2017. "A multigrid solution for the Cahn–Hilliard equation on nonuniform grids," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 320-333.
    8. Poochinapan, Kanyuta & Wongsaijai, Ben, 2022. "Numerical analysis for solving Allen-Cahn equation in 1D and 2D based on higher-order compact structure-preserving difference scheme," Applied Mathematics and Computation, Elsevier, vol. 434(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:9:p:1791-1803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.