IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i8p1345-1351.html
   My bibliography  Save this article

Input–output gain of collective response in an uncoupled parallel array of saturating dynamical subsystems

Author

Listed:
  • Duan, Fabing
  • Chapeau-Blondeau, François
  • Abbott, Derek

Abstract

We explore the collective response of an uncoupled parallel array of saturating dynamical subsystems to a noisy periodic or random signal. Numerical simulation results show that a parallel array of nonlinear saturating subsystems can enhance the signal transmission via tuning the internal noise intensity and increasing the array size. The input–output gain larger than unity, described by the signal-to-noise ratio for a periodic signal or the correlation coefficient for a random signal, is observed in a form of array stochastic resonance. This stochastic resonance phenomenon can be useful for practical information-processing systems.

Suggested Citation

  • Duan, Fabing & Chapeau-Blondeau, François & Abbott, Derek, 2009. "Input–output gain of collective response in an uncoupled parallel array of saturating dynamical subsystems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1345-1351.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:8:p:1345-1351
    DOI: 10.1016/j.physa.2008.12.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108010480
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.12.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chapeau-Blondeau, François & Duan, Fabing & Abbott, Derek, 2008. "Signal-to-noise ratio of a dynamical saturating system: Switching from stochastic resonator to signal processor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2394-2402.
    2. M. I. Dykman & P. V. E. McClintock, 1998. "What can stochastic resonance do?," Nature, Nature, vol. 391(6665), pages 344-344, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Fabing & Chapeau-Blondeau, François & Abbott, Derek, 2011. "Neural signal transduction aided by noise in multisynaptic excitatory and inhibitory pathways with saturation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2855-2862.
    2. Xu, Liyan & Duan, Fabing & Abbott, Derek & McDonnell, Mark D., 2016. "Optimal weighted suprathreshold stochastic resonance with multigroup saturating sensors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 348-355.
    3. Cheng, Chaojun & Zhou, Bingchang & Gao, Xiao & McDonnell, Mark D., 2017. "M-ary suprathreshold stochastic resonance in multilevel threshold systems with signal-dependent noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 48-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ueda, Michihito, 2010. "Improvement of signal-to-noise ratio by stochastic resonance in sigmoid function threshold systems, demonstrated using a CMOS inverter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 1978-1985.
    2. Suo, Jian & Wang, Haiyan & Lian, Wei & Dong, Haitao & Shen, Xiaohong & Yan, Yongsheng, 2023. "Feed-forward cascaded stochastic resonance and its application in ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Ren, Yuhao & Pan, Yan & Duan, Fabing, 2022. "SNR gain enhancement in a generalized matched filter using artificial optimal noise," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Chapeau-Blondeau, François & Duan, Fabing & Abbott, Derek, 2008. "Signal-to-noise ratio of a dynamical saturating system: Switching from stochastic resonator to signal processor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2394-2402.
    5. Pan, Yan & Ren, Yuhao & Duan, Fabing, 2018. "Noise benefits to robust M-estimation of location in dependent observations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 144-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:8:p:1345-1351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.