IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i20p4424-4430.html
   My bibliography  Save this article

Clustering of volatility in variable diffusion processes

Author

Listed:
  • Gunaratne, Gemunu H.
  • Nicol, Matthew
  • Seemann, Lars
  • Török, Andrei

Abstract

Increments in financial markets have anomalous statistical properties including fat-tailed distributions and volatility clustering (i.e., the autocorrelation functions of return increments decay quickly but those of the squared increments decay slowly). One of the central questions in financial market analysis is whether the nature of the underlying stochastic process can be deduced from these statistical properties. We have shown previously that a class of variable diffusion processes has fat-tailed distributions. Here we show analytically that such models also exhibit volatility clustering. To our knowledge, this is the first case where clustering of volatility is proven analytically in a model.

Suggested Citation

  • Gunaratne, Gemunu H. & Nicol, Matthew & Seemann, Lars & Török, Andrei, 2009. "Clustering of volatility in variable diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4424-4430.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:20:p:4424-4430
    DOI: 10.1016/j.physa.2009.06.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710900497X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.06.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    2. Seemann, Lars & McCauley, Joseph L. & Gunaratne, Gemunu H., 2011. "Intraday volatility and scaling in high frequency foreign exchange markets," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 121-126, June.
    3. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:20:p:4424-4430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.