IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v9y2022ics2214716022000185.html
   My bibliography  Save this article

Fleet sizing of trucks for an inter-facility material handling system using closed queueing networks

Author

Listed:
  • Amjath, Mohamed
  • Kerbache, Laoucine
  • Smith, James MacGregor
  • Elomri, Adel

Abstract

Material handling systems (MHS) are integral to logistics functions by providing various supports such as handling, moving, and storing materials in manufacturing and service organisations. This study considers determining the optimal size of a homogeneous fleet of trucks to be outsourced (or subcontracted) from a third-party logistics provider to be used daily to cyclically transport different types of raw materials from designated storage yards to intermediate buffer locations to be fed as inputs to a production facility for processing. Within this context, the problem is modelled as a closed queueing network (CQN) combined with mixed-integer nonlinear programming (MINLP) to determine the optimal fleet size. This study proposes an analytical method based on sequential quadratic programming (SQP) methodology coupled with a mean value analysis (MVA) algorithm to solve this NP-Hard problem. Furthermore, a discrete event simulation (DES) model is developed to validate the optimisation of non-dominant solutions. The proposed analytical approach, along with the simulation, are implemented in a real case study of a steel manufacturing setup. Analytical model results are validated using the simulation results, which are proved to be very accurate, with deviations ranges within ±7%.

Suggested Citation

  • Amjath, Mohamed & Kerbache, Laoucine & Smith, James MacGregor & Elomri, Adel, 2022. "Fleet sizing of trucks for an inter-facility material handling system using closed queueing networks," Operations Research Perspectives, Elsevier, vol. 9(C).
  • Handle: RePEc:eee:oprepe:v:9:y:2022:i:c:s2214716022000185
    DOI: 10.1016/j.orp.2022.100245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716022000185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2022.100245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I F A Vis & R de Koster & K J Roodbergen & L W P Peeters, 2001. "Determination of the number of automated guided vehicles required at a semi-automated container terminal," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(4), pages 409-417, April.
    2. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    3. Dima Nazzal, 2011. "A closed queueing network approach to analyzing multi-vehicle material handling systems," IISE Transactions, Taylor & Francis Journals, vol. 43(10), pages 721-738.
    4. Zou, Bipan & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," European Journal of Operational Research, Elsevier, vol. 267(2), pages 733-753.
    5. Hui-Yu Zhang & Qing-Xin Chen & Ning Mao, 2016. "System performance analysis of flexible flow shop with match processing constraint," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6052-6070, October.
    6. Kerbache, Laoucine & MacGregor Smith, James, 2004. "Queueing networks and the topological design of supply chain systems," International Journal of Production Economics, Elsevier, vol. 91(3), pages 251-272, October.
    7. J. MacGregor Smith, 2013. "Queueing Network Models of Material Handling and Transportation Systems," International Series in Operations Research & Management Science, in: J. MacGregor Smith & Barış Tan (ed.), Handbook of Stochastic Models and Analysis of Manufacturing System Operations, edition 127, chapter 0, pages 249-285, Springer.
    8. Tim Lamballais Tessensohn & Debjit Roy & René B.M. De Koster, 2020. "Inventory allocation in robotic mobile fulfillment systems," IISE Transactions, Taylor & Francis Journals, vol. 52(1), pages 1-17, January.
    9. Debjit Roy & Ananth Krishnamurthy & Sunderesh Heragu & Charles Malmborg, 2015. "Stochastic models for unit-load operations in warehouse systems with autonomous vehicles," Annals of Operations Research, Springer, vol. 231(1), pages 129-155, August.
    10. Egbelu, Pius J., 1993. "Concurrent specification of unit load sizes and automated guided vehicle fleet size in manufacturing system," International Journal of Production Economics, Elsevier, vol. 29(1), pages 49-64, February.
    11. Debjit Roy & Ananth Krishnamurthy & Sunderesh Heragu & Charles Malmborg, 2012. "Performance analysis and design trade-offs in warehouses with autonomous vehicle technology," IISE Transactions, Taylor & Francis Journals, vol. 44(12), pages 1045-1060.
    12. Nicholas Hall & Chelliah Sriskandarajah & Tharmarajah Ganesharajah, 2001. "Operational Decisions in AGV-Served Flowshop Loops: Fleet Sizing and Decomposition," Annals of Operations Research, Springer, vol. 107(1), pages 189-209, October.
    13. Laoucine Kerbache & J. Macgregor Smith, 2012. "State Dependent Models of Material Handling Systems in Closed Queueing Networks," Post-Print hal-00796338, HAL.
    14. Roy, Debjit & Krishnamurthy, Ananth & Heragu, Sunderesh & Malmborg, Charles, 2015. "Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 72-87.
    15. Chen, Wenliang & Wang, Zheng & Chan, Felix T.S., 2017. "Robust production capacity planning under uncertain wafer lots transfer probabilities for semiconductor automated material handling systems," European Journal of Operational Research, Elsevier, vol. 261(3), pages 929-940.
    16. Laoucine Kerbache & James Macgregor Smith, 2004. "Queueing networks and the topological design of supply chain systems," Post-Print hal-00465149, HAL.
    17. Adil Baykasoğlu & Kemal Subulan, 2019. "A fuzzy-stochastic optimization model for the intermodal fleet management problem of an international transportation company," Transportation Planning and Technology, Taylor & Francis Journals, vol. 42(8), pages 777-824, November.
    18. Elena Tappia & Debjit Roy & René de Koster & Marco Melacini, 2017. "Modeling, Analysis, and Design Insights for Shuttle-Based Compact Storage Systems," Transportation Science, INFORMS, vol. 51(1), pages 269-295, February.
    19. Giusti, Riccardo & Manerba, Daniele & Bruno, Giorgio & Tadei, Roberto, 2019. "Synchromodal logistics: An overview of critical success factors, enabling technologies, and open research issues," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 92-110.
    20. J. MacGregor Smith, 2016. "Joint optimisation of buffers and network population for closed finite queueing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5111-5135, September.
    21. Tsai, Ming-Chih & Lai, Kee-hung & Lloyd, Alison E. & Lin, Hung-Ju, 2012. "The dark side of logistics outsourcing – Unraveling the potential risks leading to failed relationships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 178-189.
    22. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," Post-Print hal-02312110, HAL.
    23. Hui-Yu Zhang & Shao-Hui Xi & Qing-Xin Chen & James MacGregor Smith & Ning Mao & Xiang Li, 2021. "Performance analysis of a flexible flow shop with random and state-dependent batch transport," International Journal of Production Research, Taylor & Francis Journals, vol. 59(4), pages 982-1002, February.
    24. Kuo-Hao Chang & Yu-Hsuan Huang & Shih-Pang Yang, 2014. "Vehicle fleet sizing for automated material handling systems to minimize cost subject to time constraints," IISE Transactions, Taylor & Francis Journals, vol. 46(3), pages 301-312.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Amjath & Laoucine Kerbache & James MacGregor Smith, 2024. "A Closed Queueing Networks Approach for an Optimal Heterogeneous Fleet Size of an Inter-Facility Bulk Material Transfer System," Logistics, MDPI, vol. 8(1), pages 1-38, March.
    2. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    3. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    4. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    5. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    6. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    7. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    8. Bipan Zou & René De Koster & Xianhao Xu, 2018. "Operating Policies in Robotic Compact Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 52(4), pages 788-811, August.
    9. Lamballais, T. & Roy, D. & De Koster, M.B.M., 2017. "Estimating performance in a Robotic Mobile Fulfillment System," European Journal of Operational Research, Elsevier, vol. 256(3), pages 976-990.
    10. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "Stronger mixed-integer programming-formulations for order- and rack-sequencing in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1063-1078.
    11. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    12. Merschformann, M. & Lamballais, T. & de Koster, M.B.M. & Suhl, L., 2019. "Decision rules for robotic mobile fulfillment systems," Operations Research Perspectives, Elsevier, vol. 6(C).
    13. Dong, Wenquan & Jin, Mingzhou, 2021. "Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    14. Lamballais, T. & Merschformann, M. & Roy, D. & de Koster, M.B.M. & Azadeh, K. & Suhl, L., 2022. "Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand," European Journal of Operational Research, Elsevier, vol. 300(3), pages 937-952.
    15. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    16. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    17. Lamballais, T. & Roy, D. & de Koster, M.B.M., 2017. "Inventory Allocation in Robotic Mobile Fulfillment Systems," ERIM Report Series Research in Management ERS-2017-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Chen, Wanying & Gong, Yeming & Chen, Qi & Wang, Hongwei, 2024. "Does battery management matter? Performance evaluation and operating policies in a self-climbing robotic warehouse," European Journal of Operational Research, Elsevier, vol. 312(1), pages 164-181.
    19. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    20. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:9:y:2022:i:c:s2214716022000185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.