IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v10y2023ics2214716022000355.html
   My bibliography  Save this article

Optimal manufacturer's cost sharing ratio, shipping policy and production rate – A two-echelon supply chain

Author

Listed:
  • Herbon, Avi
  • David, Israel

Abstract

We analyze an integrated inventory supply chain and seek the optimal production lot, optimal production rate, and optimal (integer) number of shipments per production lot. An increasing need for higher operational efficiency, as well as growing competition among multiple products for a limited storage capacity, is driving retailers to require more frequent shipping. This imposes pressure on suppliers to share the shipping cost with retailers. The sharing ratio of the shipment cost has not previously been considered within the context of an integrated supply chain. Therefore, we contribute to the literature by investigating this entirely new parameter, assuming that the shipment cost is shared between a manufacturer and a retailer. We also consider a distributed supply chain in which each party optimizes its own cost. We analyze the problem of finding the optimal sharing ratio of the shipment cost for such a supply chain and show that there exists a specific choice of shipment cost-sharing ratio (set by the manufacturer) that results in total costs similar to those obtained in the integrated inventory model. We develop deterministic models that provides basic insights into the investigated problem. Through mathematical analysis of a nested-designs model, we provide intermediate results (which are of interest in their own right) as well as optimal analytical solutions. We show, through numerical examples, that in the scenario where each party optimizes its own cost, the manufacturer's shipment cost is a central control variable in the sense that it affects the costs of both parties.

Suggested Citation

  • Herbon, Avi & David, Israel, 2023. "Optimal manufacturer's cost sharing ratio, shipping policy and production rate – A two-echelon supply chain," Operations Research Perspectives, Elsevier, vol. 10(C).
  • Handle: RePEc:eee:oprepe:v:10:y:2023:i:c:s2214716022000355
    DOI: 10.1016/j.orp.2022.100264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716022000355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2022.100264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Hung-Chi & Ouyang, Liang-Yuh & Wu, Kun-Shan & Ho, Chia-Huei, 2006. "Integrated vendor-buyer cooperative inventory models with controllable lead time and ordering cost reduction," European Journal of Operational Research, Elsevier, vol. 170(2), pages 481-495, April.
    2. Glock, C. H., 2010. "Batch sizing with controllable production rates," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 57823, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. A. K. Manna & B. Das & J. K. Dey & S. K. Mondal, 2018. "An EPQ model with promotional demand in random planning horizon: population varying genetic algorithm approach," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1515-1531, October.
    4. Yaping Zhao & Xiaoyun Xu & Haidong Li & Yanni Liu, 2018. "Stochastic customer order scheduling with setup times to minimize expected cycle time," International Journal of Production Research, Taylor & Francis Journals, vol. 56(7), pages 2684-2706, April.
    5. David, Israel & Eben-Chaime, Moshe, 2003. "How far should JIT vendor-buyer relationships go?," International Journal of Production Economics, Elsevier, vol. 81(1), pages 361-368, January.
    6. Utama, Dana Marsetiya & Santoso, Imam & Hendrawan, Yusuf & Dania, Wike Agustin Prima, 2022. "Integrated procurement-production inventory model in supply chain: A systematic review," Operations Research Perspectives, Elsevier, vol. 9(C).
    7. Glock, C. H. & Kim, T., 2012. "A joint economic lot sizemodel with returnable transport items," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 59079, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Herbon, Avi, 2020. "An approximated solution to the constrained integrated manufacturer-buyer supply problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    9. Wakhid Ahmad Jauhari & I. Nyoman Pujawan, 2014. "Joint economic lot size (JELS) model for single-vendor single-buyer with variable production rate and partial backorder," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 20(1), pages 91-108.
    10. Glock, Christoph H. & Grosse, Eric H., 2021. "The impact of controllable production rates on the performance of inventory systems: A systematic review of the literature," European Journal of Operational Research, Elsevier, vol. 288(3), pages 703-720.
    11. Glock, C. H., 2012. "Lead time reduction strategies in a single-vendor-single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 57816, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Ouyang, Liang-Yuh & Wu, Kun-Shan & Ho, Chia-Huei, 2004. "Integrated vendor-buyer cooperative models with stochastic demand in controllable lead time," International Journal of Production Economics, Elsevier, vol. 92(3), pages 255-266, December.
    13. Abdul-Jalbar, B. & Gutierrez, J. & Sicilia, J., 2005. "Integer-ratio policies for distribution/inventory systems," International Journal of Production Economics, Elsevier, vol. 93(1), pages 407-415, January.
    14. Rau, Hsin & Wu, Mei-Ying & Wee, Hui-Ming, 2003. "Integrated inventory model for deteriorating items under a multi-echelon supply chain environment," International Journal of Production Economics, Elsevier, vol. 86(2), pages 155-168, November.
    15. Siajadi, Hans & Ibrahim, Raafat N. & Lochert, Paul B., 2006. "Joint economic lot size in distribution system with multiple shipment policy," International Journal of Production Economics, Elsevier, vol. 102(2), pages 302-316, August.
    16. Glock, Christoph H., 2012. "Lead time reduction strategies in a single-vendor–single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand," International Journal of Production Economics, Elsevier, vol. 136(1), pages 37-44.
    17. Roohnavazfar, Mina & Manerba, Daniele & De Martin, Juan Carlos & Tadei, Roberto, 2019. "Optimal paths in multi-stage stochastic decision networks," Operations Research Perspectives, Elsevier, vol. 6(C).
    18. AlDurgham, M. & Adegbola, K. & Glock, C. H., 2017. "A single-vendor single-manufacturer integrated inventory model with stochastic demand and variable production rate," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 87594, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    19. Gérard P. Cachon & Paul H. Zipkin, 1999. "Competitive and Cooperative Inventory Policies in a Two-Stage Supply Chain," Management Science, INFORMS, vol. 45(7), pages 936-953, July.
    20. Kim, T. & Glock, C. H., 2018. "Production planning for a two-stage production system with multiple parallel machines and variable production rates," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 90347, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    21. Giri, B. C. & Yun, W. Y. & Dohi, T., 2005. "Optimal design of unreliable production-inventory systems with variable production rate," European Journal of Operational Research, Elsevier, vol. 162(2), pages 372-386, April.
    22. Kim, Taebok & Glock, Christoph H., 2018. "Production planning for a two-stage production system with multiple parallel machines and variable production rates," International Journal of Production Economics, Elsevier, vol. 196(C), pages 284-292.
    23. Sana, Shib Sankar, 2010. "An economic production lot size model in an imperfect production system," European Journal of Operational Research, Elsevier, vol. 201(1), pages 158-170, February.
    24. Glock, C. H., 2012. "The joint economic lot size problem: a review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 57811, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glock, Christoph H. & Grosse, Eric H., 2021. "The impact of controllable production rates on the performance of inventory systems: A systematic review of the literature," European Journal of Operational Research, Elsevier, vol. 288(3), pages 703-720.
    2. Asif Iqbal Malik & Biswajit Sarkar, 2020. "Coordination Supply Chain Management Under Flexible Manufacturing, Stochastic Leadtime Demand, and Mixture of Inventory," Mathematics, MDPI, vol. 8(6), pages 1-32, June.
    3. AlDurgam, Mohammad & Adegbola, Kehinde & Glock, Christoph H., 2017. "A single-vendor single-manufacturer integrated inventory model with stochastic demand and variable production rate," International Journal of Production Economics, Elsevier, vol. 191(C), pages 335-350.
    4. Dhahri, Akrem & Gharbi, Ali & Ouhimmou, Mustapha, 2022. "Integrated production-delivery control policy for an unreliable manufacturing system and multiple retailers," International Journal of Production Economics, Elsevier, vol. 245(C).
    5. Ventura, José A. & Bunn, Kevin A. & Venegas, Bárbara B. & Duan, Lisha, 2021. "A coordination mechanism for supplier selection and order quantity allocation with price-sensitive demand and finite production rates," International Journal of Production Economics, Elsevier, vol. 233(C).
    6. Herbon, Avi, 2020. "An approximated solution to the constrained integrated manufacturer-buyer supply problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    7. K. F. Mary Latha & M. Ganesh Kumar & R. Uthayakumar, 2021. "Two echelon economic lot sizing problems with geometric shipment policy backorder price discount and optimal investment to reduce ordering cost," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1133-1163, December.
    8. Beatriz Abdul-Jalbar & Roberto Dorta-Guerra & José M. Gutiérrez & Joaquín Sicilia, 2021. "Production/Inventory Policies for a Two-Echelon System with Credit Period Incentives," Mathematics, MDPI, vol. 9(15), pages 1-25, July.
    9. Castellano, Davide & Gallo, Mosè & Grassi, Andrea & Santillo, Liberatina C., 2019. "The effect of GHG emissions on production, inventory replenishment and routing decisions in a single vendor-multiple buyers supply chain," International Journal of Production Economics, Elsevier, vol. 218(C), pages 30-42.
    10. Herbon, Avi, 2021. "An integrated manufacturer-buyer chain with bounded production cycle length," Operations Research Perspectives, Elsevier, vol. 8(C).
    11. Noblesse, Ann M. & Boute, Robert N. & Lambrecht, Marc R. & Van Houdt, Benny, 2014. "Lot sizing and lead time decisions in production/inventory systems," International Journal of Production Economics, Elsevier, vol. 155(C), pages 351-360.
    12. S. Sarkar & B. C. Giri, 2020. "A vendor–buyer integrated inventory system with variable lead time and uncertain market demand," Operational Research, Springer, vol. 20(1), pages 491-515, March.
    13. Abdelsalam, Hisham M. & Elassal, Magy M., 2014. "Joint economic lot sizing problem for a three—Layer supply chain with stochastic demand," International Journal of Production Economics, Elsevier, vol. 155(C), pages 272-283.
    14. Tiwari, Sunil & Kazemi, Nima & Modak, Nikunja Mohan & Cárdenas-Barrón, Leopoldo Eduardo & Sarkar, Sumon, 2020. "The effect of human errors on an integrated stochastic supply chain model with setup cost reduction and backorder price discount," International Journal of Production Economics, Elsevier, vol. 226(C).
    15. Mehmood Khan & Matloub Hussain & Leopoldo Eduardo Cárdenas-Barrón, 2017. "Learning and screening errors in an EPQ inventory model for supply chains with stochastic lead time demands," International Journal of Production Research, Taylor & Francis Journals, vol. 55(16), pages 4816-4832, August.
    16. Nima Kazemi & Salwa Hanim Abdul-Rashid & Ehsan Shekarian & Eleonora Bottani & Roberto Montanari, 2016. "A fuzzy lot-sizing problem with two-stage composite human learning," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 5010-5025, August.
    17. Glock, Christoph H., 2012. "The joint economic lot size problem: A review," International Journal of Production Economics, Elsevier, vol. 135(2), pages 671-686.
    18. Zhang, Tinglong & Liang, Liang & Yu, Yugang & Yu, Yan, 2007. "An integrated vendor-managed inventory model for a two-echelon system with order cost reduction," International Journal of Production Economics, Elsevier, vol. 109(1-2), pages 241-253, September.
    19. Tarhini, Hussein & Karam, Mario & Jaber, Mohamad Y., 2020. "An integrated single-vendor multi-buyer production inventory model with transshipments between buyers," International Journal of Production Economics, Elsevier, vol. 225(C).
    20. Chan, Chi Kin & Fang, Fei & Langevin, André, 2018. "Single-vendor multi-buyer supply chain coordination with stochastic demand," International Journal of Production Economics, Elsevier, vol. 206(C), pages 110-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:10:y:2023:i:c:s2214716022000355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.