IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v235y2025icp175-204.html
   My bibliography  Save this article

Design of secure S-Boxes via novel 2D-Zettle chaotic map and ABC algorithm for robust image encryption

Author

Listed:
  • Ustun, Deniz
  • Sahinkaya, Serap

Abstract

This work addresses the challenge of improving security in chaos-based cryptographic systems by introducing a more effective chaotic map that is derived from the Zettle test function, providing better resistance to attacks and ensuring higher security. The design of secure S-Boxes for the R, G, and B colour channels is a critical challenge in colour image encryption. The proposed method addresses this challenge by significantly enhancing security through the use of the ABC algorithm in conjunction with the novel 2D-Zettle chaotic map. Additionally, the proposed image encryption technique addresses the problem of optimizing key selection for both encryption and decryption, ensuring robust security against various attacks and noise, as demonstrated by extensive performance evaluations. Furthermore, security assessments, including statistical analyses and resilience tests against various attacks and noise, confirm the method’s exceptional efficiency and broad applicability in safeguarding digital assets.

Suggested Citation

  • Ustun, Deniz & Sahinkaya, Serap, 2025. "Design of secure S-Boxes via novel 2D-Zettle chaotic map and ABC algorithm for robust image encryption," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 235(C), pages 175-204.
  • Handle: RePEc:eee:matcom:v:235:y:2025:i:c:p:175-204
    DOI: 10.1016/j.matcom.2025.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542500093X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mishra, Sudhanshu, 2006. "Some new test functions for global optimization and performance of repulsive particle swarm method," MPRA Paper 2718, University Library of Munich, Germany.
    2. Liu, Hongjun & Kadir, Abdurahman & Xu, Chengbo, 2020. "Cryptanalysis and constructing S-Box based on chaotic map and backtracking," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    3. Deniz Ustun & Feyza Toktas, 2021. "Surrogate-based computational analysis and design for H-shaped microstrip antenna," Journal of Electromagnetic Waves and Applications, Taylor & Francis Journals, vol. 35(1), pages 71-82, January.
    4. Toktas, Abdurrahim & Erkan, Uğur & Gao, Suo & Pak, Chanil, 2024. "A robust bit-level image encryption based on Bessel map," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    5. Bezerra, João Inácio Moreira & Machado, Gustavo & Molter, Alexandre & Soares, Rafael Iankowski & Camargo, Vinícius, 2023. "A novel simultaneous permutation–diffusion image encryption scheme based on a discrete space map," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Castro, Julio Cesar Hernandez & Sierra, José María & Seznec, Andre & Izquierdo, Antonio & Ribagorda, Arturo, 2005. "The strict avalanche criterion randomness test," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(1), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mishra, SK, 2006. "Performance of Differential Evolution and Particle Swarm Methods on Some Relatively Harder Multi-modal Benchmark Functions," MPRA Paper 449, University Library of Munich, Germany.
    2. Weitao Sun & Yuan Dong, 2011. "Study of multiscale global optimization based on parameter space partition," Journal of Global Optimization, Springer, vol. 49(1), pages 149-172, January.
    3. SaberiKamarposhti, Morteza & Ghorbani, Amirabbas & Yadollahi, Mehdi, 2024. "A comprehensive survey on image encryption: Taxonomy, challenges, and future directions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    4. Chai, Xiuli & Shang, Guangyu & Wang, Binjie & Gan, Zhihua & Zhang, Wenkai, 2024. "Exploiting 2D-SDMCHM and matching embedding driven by flag-shaped hexagon prediction for visually meaningful medical image cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    5. Hu, Long-Long & Chen, Ming-Xuan & Wang, Meng-Meng & Zhou, Nan-Run, 2024. "A multi-image encryption scheme based on block compressive sensing and nonlinear bifurcation diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    6. Hassan, Ali & Zhou, Liangqiang, 2025. "A novel 6D four-wing memristive hyperchaotic system: Generalized fixed-time synchronization and its application in secure image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    7. Li, Xuejun & Mou, Jun & Banerjee, Santo & Wang, Zhisen & Cao, Yinghong, 2022. "Design and DSP implementation of a fractional-order detuned laser hyperchaotic circuit with applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Mehmet Hakan Satman & Emre Akadal, 2020. "Machine Coded Compact Genetic Algorithms for Real Parameter Optimization Problems," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(1), pages 43-58, June.
    9. Liu, Xilin & Tong, Xiaojun & Zhang, Miao & Wang, Zhu, 2023. "A highly secure image encryption algorithm based on conservative hyperchaotic system and dynamic biogenetic gene algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    10. Linas Stripinis & Remigijus Paulavičius, 2022. "Experimental Study of Excessive Local Refinement Reduction Techniques for Global Optimization DIRECT-Type Algorithms," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    11. Hemalatha Mahalingam & Sivaraman Rethinam & Siva Janakiraman & Amirtharajan Rengarajan, 2023. "Non-Identical Inverter Rings as an Entropy Source: NIST-90B-Verified TRNG Architecture on FPGAs for IoT Device Integrity," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    12. Lai, Qiang & Hu, Genwen & Erkan, Uǧur & Toktas, Abdurrahim, 2023. "High-efficiency medical image encryption method based on 2D Logistic-Gaussian hyperchaotic map," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    13. Timothy Haas, 2020. "Developing political-ecological theory: The need for many-task computing," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-26, November.
    14. Cao, Hongli & Wang, Yu & Banerjee, Santo & Cao, Yinghong & Mou, Jun, 2024. "A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    15. Liu, Xilin & Tong, Xiaojun & Wang, Zhu & Zhang, Miao, 2022. "A new n-dimensional conservative chaos based on Generalized Hamiltonian System and its’ applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    16. Massimiliano Kaucic, 2013. "A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization," Journal of Global Optimization, Springer, vol. 55(1), pages 165-188, January.
    17. Erkan, Uğur & Toktas, Abdurrahim & Lai, Qiang, 2023. "Design of two dimensional hyperchaotic system through optimization benchmark function," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    18. Toktas, Abdurrahim & Erkan, Uğur & Gao, Suo & Pak, Chanil, 2024. "A robust bit-level image encryption based on Bessel map," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    19. Huang, Yibo & Wang, Ling & Li, Zhiyong & Zhang, Qiuyu, 2024. "A new 3D robust chaotic mapping and its application to speech encryption," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    20. Zhou, Shuang & Yin, Yanli & Erkan, Uğur & Toktas, Abdurrahim & Zhang, Yingqian, 2025. "Novel hyperchaotic system: Implementation to audio encryption," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:235:y:2025:i:c:p:175-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.