IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v232y2025icp408-426.html
   My bibliography  Save this article

Fractional truncated exponential method for linear fractional optimal control problems

Author

Listed:
  • Ounamane, Said
  • Sadek, Lakhlifa
  • Abouzaid, Bouchra
  • Sadek, El Mostafa

Abstract

In this paper, we employ the Caputo fractional derivative (CFD) approach and utilize the truncated exponential method to tackle linear fractional optimal control problems (FOCPs) with equality and inequality constraints in multi-dimensional settings. By applying the truncated exponential method, we transform the FOCP into a system of algebraic equations that can be readily solved. Our analysis extends to the convergence and error estimation (EE) of truncated exponential method polynomials, and we introduce a residual correction procedure to refine error estimates. To assess the effectiveness and applicability of the proposed method, we conduct experiments on three different examples and compare our results with those of the previously obtained ones. Our findings yield very satisfactory results, and in some cases, we obtain exact solutions.

Suggested Citation

  • Ounamane, Said & Sadek, Lakhlifa & Abouzaid, Bouchra & Sadek, El Mostafa, 2025. "Fractional truncated exponential method for linear fractional optimal control problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 232(C), pages 408-426.
  • Handle: RePEc:eee:matcom:v:232:y:2025:i:c:p:408-426
    DOI: 10.1016/j.matcom.2025.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475425000096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Marzban, Hamid Reza, 2022. "A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Ahmad, Wajdi M. & El-Khazali, Reyad, 2007. "Fractional-order dynamical models of love," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1367-1375.
    3. Sadek, Lakhlifa & Bataineh, Ahmad Sami & Isik, Osman Rasit & Alaoui, Hamad Talibi & Hashim, Ishak, 2023. "A numerical approach based on Bernstein collocation method: Application to differential Lyapunov and Sylvester matrix equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 475-488.
    4. Yüzbaşı, Şuayip & Yıldırım, Gamze, 2022. "A collocation method to solve the parabolic-type partial integro-differential equations via Pell–Lucas polynomials," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deniz Elmaci & Nurcan Baykus & Savasaneril, 2022. "The Lucas Polynomial Solution Of Linear Volterra-Fredholm Integral Equations," Matrix Science Mathematic (MSMK), Zibeline International Publishing, vol. 6(1), pages 21-25, September.
    2. Baleanu, Dumitru & Hasanabadi, Manijeh & Mahmoudzadeh Vaziri, Asadollah & Jajarmi, Amin, 2023. "A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Liu, Yifan & Cai, Jiazhi & Xu, Haowen & Shan, Minghe & Gao, Qingbin, 2023. "Stability and Hopf bifurcation of a love model with two delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 558-580.
    4. Pirkhedri, A. & Javadi, H.H.S., 2015. "Solving the time-fractional diffusion equation via Sinc–Haar collocation method," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 317-326.
    5. Kumar, Pushpendra & Erturk, Vedat Suat & Murillo-Arcila, Marina, 2021. "A complex fractional mathematical modeling for the love story of Layla and Majnun," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Mekoth, Chitra & George, Santhosh & Jidesh, P., 2021. "Fractional Tikhonov regularization method in Hilbert scales," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    7. Al-Mdallal, Qasem M., 2009. "An efficient method for solving fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 183-189.
    8. Kumar, Surendra & Sharma, Abhishek & Pal Singh, Harendra, 2021. "Convergence and global stability analysis of fractional delay block boundary value methods for fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Agarwal, Ritu & Kritika, & Purohit, Sunil Dutt, 2021. "Mathematical model pertaining to the effect of buffer over cytosolic calcium concentration distribution," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    10. Fang, Qingxiang & Peng, Jigen, 2018. "Synchronization of fractional-order linear complex networks with directed coupling topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 542-553.
    11. Yang, Yongge & Xu, Wei & Gu, Xudong & Sun, Yahui, 2015. "Stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 190-204.
    12. Samer S. Ezz-Eldien & Ramy M. Hafez & Ali H. Bhrawy & Dumitru Baleanu & Ahmed A. El-Kalaawy, 2017. "New Numerical Approach for Fractional Variational Problems Using Shifted Legendre Orthonormal Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 295-320, July.
    13. Li, Hesong & Li, Zhaoting & Zhang, Hongbo & Wang, Yi, 2025. "An adaptive mesh refinement method considering control errors for pseudospectral discretization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 232(C), pages 140-159.
    14. Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:232:y:2025:i:c:p:408-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.