IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v218y2024icp248-265.html
   My bibliography  Save this article

Gooseneck barnacle optimization algorithm: A novel nature inspired optimization theory and application

Author

Listed:
  • Ahmed, Marzia
  • Sulaiman, Mohd Herwan
  • Mohamad, Ahmad Johari
  • Rahman, Mostafijur

Abstract

This paper introduces the Gooseneck Barnacle Optimisation Algorithm (GBO) as a novel evolutionary method inspired by the natural mating behaviour of gooseneck barnacles, which involves sperm casting and self-fertilization. GBO is mathematically modelled, considering the hermaphroditic nature of these microorganisms that have thrived since the Jurassic period. In contrast to the previously published Barnacle Mating Optimizer (BMO) algorithm, GBO more accurately captures the unique static and dynamic mating behaviours specific to gooseneck barnacles. The algorithm incorporates essential factors, such as navigational sperm casting properties, food availability, food attractiveness, wind direction, and intertidal zone wave movement during mating, creating two vital optimization stages: exploration and exploitation. Real-world case studies and mathematical test functions serve as qualitative and quantitative benchmarks. The results demonstrate that GBO outperforms well-known algorithms, including the previous BMO, by effectively improving the initial random population for a given problem, converging to the global optimum, and producing significantly better optimization outcomes.

Suggested Citation

  • Ahmed, Marzia & Sulaiman, Mohd Herwan & Mohamad, Ahmad Johari & Rahman, Mostafijur, 2024. "Gooseneck barnacle optimization algorithm: A novel nature inspired optimization theory and application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 248-265.
  • Handle: RePEc:eee:matcom:v:218:y:2024:i:c:p:248-265
    DOI: 10.1016/j.matcom.2023.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423004329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:218:y:2024:i:c:p:248-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.