IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v217y2024icp21-36.html
   My bibliography  Save this article

Deep learning based solution of nonlinear partial differential equations arising in the process of arterial blood flow

Author

Listed:
  • Bhaumik, Bivas
  • De, Soumen
  • Changdar, Satyasaran

Abstract

The present work introduces a deep learning approach to describe the perturbations of the pressure and radius in arterial blood flow. A mathematical model for the simulation of viscoelastic arterial flow is developed based on the assumption of long wavelength and large Reynolds number. Then, the reductive perturbation method is used to derive nonlinear evolutionary equations describing the resistance of the medium, the elastic properties, and the viscous properties of the wall. Using automatic differentiation, the solutions of nonlinear evolutionary equations at different time scales are represented using state-of-the-art physics-informed deep neural networks that are trained on a limited number of data points. The optimal neural network architecture for solving the nonlinear partial differential equations is found by employing Bayesian Hyperparameter Optimization. The proposed technique provides an alternate approach to avoid time-consuming numerical discretization methods such as finite difference or finite element for solving higher order nonlinear partial differential equations. Additionally, the capability of the trained model is demonstrated through graphs, and the solutions are also validated numerically. The graphical illustrations of pulse wave propagation can provide the correct interpretation of cardiovascular parameters, leading to an accurate diagnosis and successful treatment. Thus, the findings of this study could pave the way for the rapid development of emerging medical machine learning applications.

Suggested Citation

  • Bhaumik, Bivas & De, Soumen & Changdar, Satyasaran, 2024. "Deep learning based solution of nonlinear partial differential equations arising in the process of arterial blood flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 21-36.
  • Handle: RePEc:eee:matcom:v:217:y:2024:i:c:p:21-36
    DOI: 10.1016/j.matcom.2023.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423004469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:217:y:2024:i:c:p:21-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.