Comparison of inviscid and viscid one-dimensional models of blood flow in arteries
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2021.126856
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Spiller, C. & Toro, E.F. & Vázquez-Cendón, M.E. & Contarino, C., 2017. "On the exact solution of the Riemann problem for blood flow in human veins, including collapse," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 178-189.
- Zaman, A. & Ali, N. & Sajid, M., 2017. "Numerical simulation of pulsatile flow of blood in a porous-saturated overlapping stenosed artery," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 134(C), pages 1-16.
- Xiaofei Wang & Jose-Maria Fullana & Pierre-Yves Lagrée, 2015. "Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(15), pages 1704-1725, November.
- Ameenuddin, Mohammed & Anand, Mohan & Massoudi, Mehrdad, 2019. "Effects of shear-dependent viscosity and hematocrit on blood flow," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 299-311.
- Li, Yong-Min & Sedeh, Shahab Naghdi & Toghraie, Davood & Alizadeh, As’ad, 2021. "Computational hemodynamics and thermal analysis of laminar blood flow for different types of hypertension," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 330-341.
- Elhanafy, Ahmed & Guaily, Amr & Elsaid, Ahmed, 2019. "Numerical simulation of blood flow in abdominal aortic aneurysms: Effects of blood shear-thinning and viscoelastic properties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 55-71.
- Taha Sochi, 2016. "The flow of power law fluids in elastic networks and porous media," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 19(3), pages 324-329, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anco, Stephen C. & Garrido, Tamara M. & Márquez, Almudena P. & Gandarias, María L., 2023. "Exact solutions and conservation laws of a one-dimensional PDE model for a blood vessel," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Gerasim V. Krivovichev, 2022. "On the Effects of Boundary Conditions in One-Dimensional Models of Hemodynamics," Mathematics, MDPI, vol. 10(21), pages 1-14, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gerasim Vladimirovich Krivovichev, 2021. "Comparison of Non-Newtonian Models of One-Dimensional Hemodynamics," Mathematics, MDPI, vol. 9(19), pages 1-16, October.
- Mădălina Sofia Paşca & Olivia Bundău & Adina Juratoni & Bogdan Căruntu, 2022. "The Least Squares Homotopy Perturbation Method for Systems of Differential Equations with Application to a Blood Flow Model," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
- Raju, C.S.K. & Basha, H. Thameem & Noor, N.F.M. & Shah, Nehad Ali & Yook, Se-Jin, 2024. "Significance of body acceleration and gold nanoparticles through blood flow in an uneven/composite inclined stenosis artery: A finite difference computation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 399-419.
- Bhaumik, Bivas & De, Soumen & Changdar, Satyasaran, 2024. "Deep learning based solution of nonlinear partial differential equations arising in the process of arterial blood flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 21-36.
- Zaman, Akbar & Ali, Nasir & Khan, Ambreen Afsar, 2020. "Computational biomedical simulations of hybrid nanoparticles on unsteady blood hemodynamics in a stenotic artery," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 169(C), pages 117-132.
- Anco, Stephen C. & Garrido, Tamara M. & Márquez, Almudena P. & Gandarias, María L., 2023. "Exact solutions and conservation laws of a one-dimensional PDE model for a blood vessel," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
More about this item
Keywords
Blood flow; Hemodynamics; One-dimensional model; Non-Newtonian fluid;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:418:y:2022:i:c:s0096300321009395. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.