IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v205y2023icp1029-1051.html
   My bibliography  Save this article

Bioconvective chemically reactive entropy optimized Cross-nano-material conveying oxytactic microorganisms over a flexible cylinder with Lorentz force and Arrhenius kinetics

Author

Listed:
  • Ali, Asgar
  • Sarkar, Soumitra
  • Das, Sanatan

Abstract

In this research study, an entropy assessment in the bioconvective Darcy–Forchheimer (DF) stream of MHD Cross nanofluid carrying oxytactic microbes past a flexible cylinder with velocity slip, Arrhenius kinetics, and chemical reaction is predicted. The Buongiorno model is used to expose random movement and thermophoresis phenomena. The simulated model equations are transmuted to coupled highly nonlinear ODEs by employing a suitable similarity transition and boundary-layer approximation. The resultant ODEs are tackled numerically using the RKF45 with the shooting approach via NDSolve in Mathematica software with specific ranges of parameters like 0.1≤We,λ,Gt,Gc,Rb,Ω,Ec≤0.4, 0.1≤M2,E,Pe≤2, 0.01≤γ≤0.2, π/5≤α≤π/2, 0.1≤S1,S2,S3,Kp≤0.7, 0≤Fr≤3, 0.01≤Nt,Nb≤0.4, 0≤K≤0.9, 0.1≤Lb,Sc≤0.5 and 0.2≤Pr≤3. The outcomes show that the velocity field slows down due to an elevation in the porosity parameter and Forchheimer number. The thermal, solutal and microbial profiles decline due to their respective stratification parameters. Furthermore, activation energy encourages the Sherwood number, but it is dropped significantly as the chemical reaction progresses. It is also worth noting that the porosity parameter and Forchheimer number promote entropy production rate, while an opposing attribute is assessed for higher activation energy.

Suggested Citation

  • Ali, Asgar & Sarkar, Soumitra & Das, Sanatan, 2023. "Bioconvective chemically reactive entropy optimized Cross-nano-material conveying oxytactic microorganisms over a flexible cylinder with Lorentz force and Arrhenius kinetics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 1029-1051.
  • Handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:1029-1051
    DOI: 10.1016/j.matcom.2022.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422004517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalpana, G. & Madhura, K.R. & Kudenatti, Ramesh B., 2022. "Numerical study on the combined effects of Brownian motion and thermophoresis on an unsteady magnetohydrodynamics nanofluid boundary layer flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 78-96.
    2. Chu, Yu-Ming & Shankaralingappa, B.M. & Gireesha, B.J. & Alzahrani, Faris & Khan, M. Ijaz & Khan, Sami Ullah, 2022. "Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "A model development for thermal and solutal transport analysis in radiating entropy optimized and magnetized flow of nanomaterial by convectively heated stretched surface," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "Mixed convective entropy optimized flow of rheological nanoliquid subject to Cattaneo-Christov fluxes: An application to solar energy," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalpana, G. & Madhura, K.R. & Kudenatti, Ramesh B., 2022. "Numerical study on the combined effects of Brownian motion and thermophoresis on an unsteady magnetohydrodynamics nanofluid boundary layer flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 78-96.
    2. Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "Mixed convective entropy optimized flow of rheological nanoliquid subject to Cattaneo-Christov fluxes: An application to solar energy," Energy, Elsevier, vol. 278(PA).
    3. Raja, M. Asif Zahoor & Shoaib, M. & Zubair, Ghania & Khan, M. Ijaz & Punith Gowda, R.J. & Prasannakumara, B.C. & Guedri, Kamel, 2022. "Intelligent neuro-computing for entropy generated Darcy–Forchheimer​ mixed convective fluid flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 193-214.
    4. Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "A model development for thermal and solutal transport analysis in radiating entropy optimized and magnetized flow of nanomaterial by convectively heated stretched surface," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    5. Farqad T. Najim & Sami Kaplan & Hayder I. Mohammed & Anmar Dulaimi & Azher M. Abed & Raed Khalid Ibrahem & Fadhil Abbas Al-Qrimli & Mustafa Z. Mahmoud & Jan Awrejcewicz & Witold Pawłowski, 2022. "Evaluation of Melting Mechanism and Natural Convection Effect in a Triplex Tube Heat Storage System with a Novel Fin Arrangement," Sustainability, MDPI, vol. 14(17), pages 1, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:1029-1051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.