IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v201y2022icp486-507.html
   My bibliography  Save this article

Modeling and simulation based investigation of unsteady MHD radiative flow of rate type fluid; a comparative fractional analysis

Author

Listed:
  • Asifa,
  • Kumam, Poom
  • Tassaddiq, Asifa
  • Watthayu, Wiboonsak
  • Shah, Zahir
  • Anwar, Talha

Abstract

In this work, a generalized unsteady magnetohydrodynamic transport of a rate type fluid near an unbounded upright plate is analyzed under Newtonian heating and non-uniform velocity conditions. The vertical plate is suspended in a porous medium and is encountering the radiation effects. Three different fractional models for Maxwell fluid are established by using the modern definitions of Atangana–Baleanu, Caputo–Fabrizio, and Caputo fractional operators. Triple fractional analysis is conducted to reach out to the solutions of consequent flow and energy equations. Laplace transform and Stehfest’s numerical algorithm are jointly applied to solve each fractional model. Shear stress and heat transfer rate are measured at the solid–fluid interface in the form of skin friction coefficient and Nusselt number respectively. The physical significance of associated parameters in velocity and energy boundary layers is investigated and graphs are provided to discuss the relevant physical arguments. A tabular analysis is performed to demonstrate the influence of physical parameters on shear stress and heat transfer rate. An empirical comparison between fractional and classical solutions indicates that fractional operators provide a better explanation of the physical features of the model. It is also analyzed that for Newtonian heating and non-uniform velocity conditions, the Atangana–Baleanu fractional operator is the finest fractional model to describe the memory effect of velocity and energy distribution. The velocity of a Maxwell fluid is always higher for constant velocity condition as compared to the ramped velocity condition. Furthermore, the heat transfer rate declines for increasing values of the fractional parameter α and a minimum value is witnessed for the classical model but, it follows an inverse trend when the radiation parameter Rd increases.

Suggested Citation

  • Asifa, & Kumam, Poom & Tassaddiq, Asifa & Watthayu, Wiboonsak & Shah, Zahir & Anwar, Talha, 2022. "Modeling and simulation based investigation of unsteady MHD radiative flow of rate type fluid; a comparative fractional analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 486-507.
  • Handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:486-507
    DOI: 10.1016/j.matcom.2021.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421000446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Xiao-Jun & Machado, J.A. Tenreiro, 2017. "A new fractional operator of variable order: Application in the description of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 276-283.
    2. Qasem Al-Mdallal & Kashif Ali Abro & Ilyas Khan, 2018. "Analytical Solutions of Fractional Walter’s B Fluid with Applications," Complexity, Hindawi, vol. 2018, pages 1-10, February.
    3. Atangana, Abdon & Gómez-Aguilar, J.F., 2017. "A new derivative with normal distribution kernel: Theory, methods and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 1-14.
    4. Atangana, Abdon, 2018. "Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 688-706.
    5. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Economic interpretation of fractional derivatives," Papers 1712.09575, arXiv.org.
    6. Mohebbi, Rasul & Delouei, Amin Amiri & Jamali, Amin & Izadi, Mohsen & Mohamad, Abdulmajeed A., 2019. "Pore-scale simulation of non-Newtonian power-law fluid flow and forced convection in partially porous media: Thermal lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 642-656.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    2. Paul Hauseux & Jack S Hale & Stéphane P A Bordas, 2017. "Calculating the Malliavin derivative of some stochastic mechanics problems," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
    3. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    4. Tarasov, Vasily E. & Tarasova, Valentina V., 2018. "Macroeconomic models with long dynamic memory: Fractional calculus approach," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 466-486.
    5. Riaz, M.B. & Iftikhar, N., 2020. "A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Al-khedhairi, A. & Matouk, A.E. & Khan, I., 2019. "Chaotic dynamics and chaos control for the fractional-order geomagnetic field model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 390-401.
    7. Atangana, Abdon & Gómez-Aguilar, J.F., 2018. "Fractional derivatives with no-index law property: Application to chaos and statistics," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 516-535.
    8. Al-khedhairi, A. & Elsadany, A.A. & Elsonbaty, A., 2019. "Modelling immune systems based on Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 25-39.
    9. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    10. dos Santos, Maike A.F., 2019. "Analytic approaches of the anomalous diffusion: A review," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 86-96.
    11. Atangana, Abdon & Shafiq, Anum, 2019. "Differential and integral operators with constant fractional order and variable fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 226-243.
    12. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    13. Yin, Baoli & Liu, Yang & Li, Hong, 2020. "A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    14. Bandaliyev, R.A. & Ibayev, E.A. & Omarova, K.K., 2021. "Investigation of fractional order differential equation for boundary functional of a semi-Markov random walk process with negative drift and positive jumps," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    16. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    17. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    18. Guangming Shao & Biao Liu & Yueying Liu, 2018. "The Unique Existence of Weak Solution and the Optimal Control for Time-Fractional Third Grade Fluid System," Complexity, Hindawi, vol. 2018, pages 1-12, November.
    19. Chatibi, Y. & El Kinani, E.H. & Ouhadan, A., 2019. "Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 117-121.
    20. Hamid Boulares & Abdelkader Moumen & Khaireddine Fernane & Jehad Alzabut & Hicham Saber & Tariq Alraqad & Mhamed Benaissa, 2023. "On Solutions of Fractional Integrodifferential Systems Involving Ψ-Caputo Derivative and Ψ-Riemann–Liouville Fractional Integral," Mathematics, MDPI, vol. 11(6), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:486-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.