IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v182y2021icp211-233.html
   My bibliography  Save this article

Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method

Author

Listed:
  • Akinyemi, Lanre
  • Şenol, Mehmet
  • Iyiola, Olaniyi S.

Abstract

In this paper, our focus is on the multidimensional mathematical physics models. We employ the sub-equation method to obtain new exact solutions to the proposed strongly nonlinear time-fractional differential equations of conformable type. The models considered are generalized Benjamin equation, modified generalized multidimensional Kadomtsev–Petviashvili (KP) equations, modified generalized multidimensional KP–BBM equation and the variant Boussinesq system of equations. We also introduced a new modified generalized multidimensional KP type equation and its exact solutions. As the order of fractional derivative tends to one, the obtain exact solutions by the proposed method reduce to classical solutions. We successfully established varieties of soliton type solutions. The results obtained affirm that sub-equation method is an efficient and powerful technique for analytic solutions of nonlinear fractional partial differential equations.

Suggested Citation

  • Akinyemi, Lanre & Şenol, Mehmet & Iyiola, Olaniyi S., 2021. "Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 211-233.
  • Handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:211-233
    DOI: 10.1016/j.matcom.2020.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420303670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    2. Suheil A. Khuri, 2001. "A Laplace decomposition algorithm applied to a class of nonlinear differential equations," Journal of Applied Mathematics, Hindawi, vol. 1, pages 1-15, January.
    3. El-Wakil, S.A. & Abdou, M.A., 2007. "New exact travelling wave solutions using modified extended tanh-function method," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 840-852.
    4. Akinyemi, Lanre & Huseen, Shaheed N., 2020. "A powerful approach to study the new modified coupled Korteweg–de Vries system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 556-567.
    5. Zhang, Sheng, 2008. "Application of Exp-function method to high-dimensional nonlinear evolution equation," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 270-276.
    6. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.
    7. Sweilam, Nasser H. & Abou Hasan, Muner M. & Baleanu, Dumitru, 2017. "New studies for general fractional financial models of awareness and trial advertising decisions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 772-784.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silambarasan, Rathinavel & Kılıçman, Adem, 2023. "Solitons of dispersive wave steered from Navier–Bernoulli and Love’s hypothesis in cylindrical elastic rod with compressible Murnaghan’s materials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 699-720.
    2. Noha M. Rasheed & Mohammed O. Al-Amr & Emad A. Az-Zo’bi & Mohammad A. Tashtoush & Lanre Akinyemi, 2021. "Stable Optical Solitons for the Higher-Order Non-Kerr NLSE via the Modified Simple Equation Method," Mathematics, MDPI, vol. 9(16), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    2. Borhanifar, A. & Kabir, M.M. & Maryam Vahdat, L., 2009. "New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1646-1654.
    3. Pundikala Veeresha & Doddabhadrappla Gowda Prakasha & Dumitru Baleanu, 2019. "An Efficient Numerical Technique for the Nonlinear Fractional Kolmogorov–Petrovskii–Piskunov Equation," Mathematics, MDPI, vol. 7(3), pages 1-18, March.
    4. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    5. (Benn)Wu, Xu-Hong & He, Ji-Huan, 2008. "EXP-function method and its application to nonlinear equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 903-910.
    6. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    7. Erbaş, Barış & Yusufoğlu, Elçin, 2009. "Exp-function method for constructing exact solutions of Sharma–Tasso–Olver equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2326-2330.
    8. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    9. Khani, F., 2009. "Analytic study on the higher order Ito equations: New solitary wave solutions using the Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2128-2134.
    10. Bekir, Ahmet, 2009. "The tanh–coth method combined with the Riccati equation for solving non-linear equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1467-1474.
    11. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    12. Sheng Zhang & Jiao Gao & Bo Xu, 2022. "An Integrable Evolution System and Its Analytical Solutions with the Help of Mixed Spectral AKNS Matrix Problem," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    13. Verma, S. & Viswanathan, P., 2018. "A note on Katugampola fractional calculus and fractal dimensions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 220-230.
    14. Zhao, Dazhi & Yu, Guozhu & Tian, Yan, 2020. "Recursive formulae for the analytic solution of the nonlinear spatial conformable fractional evolution equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    15. Syam, Muhammed I. & Sharadga, Mwaffag & Hashim, I., 2021. "A numerical method for solving fractional delay differential equations based on the operational matrix method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    16. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    17. Benjemaa, Mondher, 2018. "Taylor’s formula involving generalized fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 182-195.
    18. Xu, Lan, 2008. "Variational approach to solitons of nonlinear dispersive K(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 137-143.
    19. Suheel Abdullah Malik & Ijaz Mansoor Qureshi & Muhammad Amir & Aqdas Naveed Malik & Ihsanul Haq, 2015. "Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    20. Zeng, Xiping & Dai, Zhengde & Li, Donglong, 2009. "New periodic soliton solutions for the (3+1)-dimensional potential-YTSF equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 657-661.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:211-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.