IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v144y2018icp247-265.html
   My bibliography  Save this article

An availability-based system with general repair via Bayesian aspect

Author

Listed:
  • Ke, Jau-Chuan
  • Chang, Chia-Jung
  • Lee, Wen-Chiung

Abstract

We study the Bayesian inferences of an availability system with reboot delay and standby switching failures, in which the system consists of one active component and one warm standby. The system is studied under the assumption that the time-to-failure and the time-to-repair are assumed to follow an exponential and a general distribution. The reboot time is assumed to be exponentially distributed with parameter β. There is always the failure possibility c during the switching process from standby-component state to the active-component state. To implement the simulation inference for the system availability, two repair-time distributions, namely, the lognormal and Erlang distributions characterized by their shape parameters are considered. Finally, all simulation results are displayed by appropriate tables and curves to analyze the performance of the statistical inference procedures.

Suggested Citation

  • Ke, Jau-Chuan & Chang, Chia-Jung & Lee, Wen-Chiung, 2018. "An availability-based system with general repair via Bayesian aspect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 247-265.
  • Handle: RePEc:eee:matcom:v:144:y:2018:i:c:p:247-265
    DOI: 10.1016/j.matcom.2017.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475417303191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsu, Ying-Lin & Lee, Ssu-Lang & Ke, Jau-Chuan, 2009. "A repairable system with imperfect coverage and reboot: Bayesian and asymptotic estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2227-2239.
    2. P. Chandrasekhar & R. Natarajan & V. S. S. Yadavalli, 2004. "A Study On A Two Unit Standby System With Erlangian Repair Time," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 271-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohit Patawa & Pramendra Singh Pundir & Alok Kumar Sigh & Abhinav Singh, 2022. "Some inferences on reliability measures of two-non-identical units cold standby system waiting for repair," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 172-188, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsu, Ying-Lin & Ke, Jau-Chuan & Liu, Tzu-Hsin, 2011. "Standby system with general repair, reboot delay, switching failure and unreliable repair facility—A statistical standpoint," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2400-2413.
    2. Patawa, Rohit & Pundir, Pramendra Singh, 2023. "Inferential study of single unit repairable system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 503-516.
    3. Hsu, Ying-Lin & Lee, Ssu-Lang & Ke, Jau-Chuan, 2009. "A repairable system with imperfect coverage and reboot: Bayesian and asymptotic estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2227-2239.
    4. Qingqing Zhai & Rui Peng & Liudong Xing & Jun Yang, 2013. "Binary decision diagram-based reliability evaluation of k-out-of-(n + k) warm standby systems subject to fault-level coverage," Journal of Risk and Reliability, , vol. 227(5), pages 540-548, October.
    5. Rohit Patawa & Pramendra Singh Pundir & Alok Kumar Sigh & Abhinav Singh, 2022. "Some inferences on reliability measures of two-non-identical units cold standby system waiting for repair," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 172-188, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:144:y:2018:i:c:p:247-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.