IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v120y2016icp104-119.html
   My bibliography  Save this article

Challenging simulation practice (failure and success) on implicit tracking control of double-integrator system via Zhang-gradient method

Author

Listed:
  • Zhang, Yunong
  • Zhai, Keke
  • Chen, Dechao
  • Jin, Long
  • Hu, Chaowei

Abstract

Zhang-gradient (ZG) method is a combination of Zhang dynamics (ZD) and gradient dynamics (GD) methods which are two powerful methods for online time-varying problems solving. ZG controllers are designed using the ZG method to solve the tracking control problem of a certain system. In this paper, the design process of the ZG controllers with explicit as well as implicit tracking control of the double-integrator system is presented in detail. In addition, the corresponding computer simulations are conducted with different values of the design parameter λ to illustrate the effectiveness of ZG controllers. However, even though the ZG controllers are powerful, there is still a challenge in the simulation practice. Specifically, different settings of simulation options in MATLAB ordinary differential equation (ODE) solvers may lead to different simulation results (e.g., failure and success). For better comparison, the successful and failed simulation results are both presented. The differences in simulation results remind us to pay more attention to MATLAB defaults and options when we conduct such simulations.

Suggested Citation

  • Zhang, Yunong & Zhai, Keke & Chen, Dechao & Jin, Long & Hu, Chaowei, 2016. "Challenging simulation practice (failure and success) on implicit tracking control of double-integrator system via Zhang-gradient method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 104-119.
  • Handle: RePEc:eee:matcom:v:120:y:2016:i:c:p:104-119
    DOI: 10.1016/j.matcom.2015.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475415001342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frechard, J. & Knittel, D. & Dessagne, P. & Pellé, J.S. & Gaudiot, G. & Caspar, J.C. & Heitz, G., 2013. "Modelling and fast position control of a new unwinding–winding mechanism design," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 90(C), pages 116-131.
    2. Yi, Chenfu & Zhang, Yunong & Guo, Dongsheng, 2013. "A new type of recurrent neural networks for real-time solution of Lyapunov equation with time-varying coefficient matrices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 40-52.
    3. El Fadil, H. & Giri, F. & Guerrero, Josep M., 2013. "Adaptive sliding mode control of interleaved parallel boost converter for fuel cell energy generation system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 193-210.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseinipour-Mahani, N. & Malek, A., 2016. "A neurodynamic optimization technique based on overestimator and underestimator functions for solving a class of non-convex optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 20-34.
    2. Bolin Liao & Cheng Hua & Xinwei Cao & Vasilios N. Katsikis & Shuai Li, 2022. "Complex Noise-Resistant Zeroing Neural Network for Computing Complex Time-Dependent Lyapunov Equation," Mathematics, MDPI, vol. 10(15), pages 1-17, August.
    3. Hollweg, Guilherme Vieira & Evald, Paulo Jefferson Dias de Oliveira & Milbradt, Deise Maria Cirolini & Tambara, Rodrigo Varella & Gründling, Hilton Abílio, 2022. "Design of continuous-time model reference adaptive and super-twisting sliding mode controller," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 215-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:120:y:2016:i:c:p:104-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.