IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v39y2011i1p33-40.html
   My bibliography  Save this article

On linear bilevel problems with multiple objectives at the lower level

Author

Listed:
  • Calvete, Herminia I.
  • Galé, Carmen

Abstract

Bilevel programming problems provide a framework to deal with decision processes involving two decision makers with a hierarchical structure. They are characterized by the existence of two optimization problems in which the constraint region of the upper level problem is implicitly determined by the lower level optimization problem. This paper focuses on bilevel problems for which the lower level problem is a linear multiobjective program and constraints at both levels define polyhedra. This bilevel problem is reformulated as an optimization problem over a nonconvex region given by a union of faces of the polyhedron defined by all constraints. This reformulation is obtained when dealing with efficient solutions as well as weakly efficient solutions for the lower level problem. Assuming that the upper level objective function is quasiconcave, then an extreme point exists which solves the problem. An exact and a metaheuristic algorithm are developed and their performance is analyzed and compared.

Suggested Citation

  • Calvete, Herminia I. & Galé, Carmen, 2011. "On linear bilevel problems with multiple objectives at the lower level," Omega, Elsevier, vol. 39(1), pages 33-40, January.
  • Handle: RePEc:eee:jomega:v:39:y:2011:i:1:p:33-40
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(10)00020-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bard, Jonathan F, 1983. "Coordination of a multidivisional organization through two levels of management," Omega, Elsevier, vol. 11(5), pages 457-468.
    2. Wayne F. Bialas & Mark H. Karwan, 1984. "Two-Level Linear Programming," Management Science, INFORMS, vol. 30(8), pages 1004-1020, August.
    3. Calvete, Herminia I. & Gale, Carmen & Mateo, Pedro M., 2008. "A new approach for solving linear bilevel problems using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 188(1), pages 14-28, July.
    4. Kunsch, P.L. & Kavathatzopoulos, I. & Rauschmayer, F., 2009. "Modelling complex ethical decision problems with operations research," Omega, Elsevier, vol. 37(6), pages 1100-1108, December.
    5. Ankhili, Z. & Mansouri, A., 2009. "An exact penalty on bilevel programs with linear vector optimization lower level," European Journal of Operational Research, Elsevier, vol. 197(1), pages 36-41, August.
    6. H. Bonnel & J. Morgan, 2006. "Semivectorial Bilevel Optimization Problem: Penalty Approach," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 365-382, December.
    7. Walker, Warren E., 2009. "Does the best practice of rational-style model-based policy analysis already include ethical considerations?," Omega, Elsevier, vol. 37(6), pages 1051-1062, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    2. Kahina Ghazli & Nicolas Gillis & Mustapha Moulaï, 2020. "Optimizing over the properly efficient set of convex multi-objective optimization problems," Annals of Operations Research, Springer, vol. 295(2), pages 575-604, December.
    3. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    4. Xiang Li & Tiesong Hu & Xin Wang & Ali Mahmoud & Xiang Zeng, 2023. "The New Solution Concept to Ill-Posed Bilevel Programming: Non-Antagonistic Pessimistic Solution," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    5. Dempe, S., 2011. "Comment to "interactive fuzzy goal programming approach for bilevel programming problem" by S.R. Arora and R. Gupta," European Journal of Operational Research, Elsevier, vol. 212(2), pages 429-431, July.
    6. Alves, Maria João & Henggeler Antunes, Carlos, 2022. "A new exact method for linear bilevel problems with multiple objective functions at the lower level," European Journal of Operational Research, Elsevier, vol. 303(1), pages 312-327.
    7. Maria João Alves & Carlos Henggeler Antunes & João Paulo Costa, 2021. "New concepts and an algorithm for multiobjective bilevel programming: optimistic, pessimistic and moderate solutions," Operational Research, Springer, vol. 21(4), pages 2593-2626, December.
    8. Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2013. "An efficient evolutionary algorithm for the ring star problem," European Journal of Operational Research, Elsevier, vol. 231(1), pages 22-33.
    9. Lin, Rung-Chuan & Sir, Mustafa Y. & Pasupathy, Kalyan S., 2013. "Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services," Omega, Elsevier, vol. 41(5), pages 881-892.
    10. Tilahun, Surafel Luleseged, 2019. "Feasibility reduction approach for hierarchical decision making with multiple objectives," Operations Research Perspectives, Elsevier, vol. 6(C).
    11. Li, Deng-Feng, 2011. "Linear programming approach to solve interval-valued matrix games," Omega, Elsevier, vol. 39(6), pages 655-666, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alves, Maria João & Henggeler Antunes, Carlos, 2022. "A new exact method for linear bilevel problems with multiple objective functions at the lower level," European Journal of Operational Research, Elsevier, vol. 303(1), pages 312-327.
    2. Ormerod, Richard J. & Ulrich, Werner, 2013. "Operational research and ethics: A literature review," European Journal of Operational Research, Elsevier, vol. 228(2), pages 291-307.
    3. Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.
    4. Pramanik, Surapati & Roy, Tapan Kumar, 2007. "Fuzzy goal programming approach to multilevel programming problems," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1151-1166, January.
    5. Henri Bonnel & Christopher Schneider, 2019. "Post-Pareto Analysis and a New Algorithm for the Optimal Parameter Tuning of the Elastic Net," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 993-1027, December.
    6. Sinha, Ankur & Malo, Pekka & Deb, Kalyanmoy, 2017. "Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping," European Journal of Operational Research, Elsevier, vol. 257(2), pages 395-411.
    7. Henri Bonnel & Julien Collonge, 2014. "Stochastic Optimization over a Pareto Set Associated with a Stochastic Multi-Objective Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 405-427, August.
    8. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    9. Diekmann, Sven, 2013. "Moral mid-level principles in modeling," European Journal of Operational Research, Elsevier, vol. 226(1), pages 132-138.
    10. Kahina Ghazli & Nicolas Gillis & Mustapha Moulaï, 2020. "Optimizing over the properly efficient set of convex multi-objective optimization problems," Annals of Operations Research, Springer, vol. 295(2), pages 575-604, December.
    11. Zhiqing Meng & Chuangyin Dang & Rui Shen & Ming Jiang, 2012. "An Objective Penalty Function of Bilevel Programming," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 377-387, May.
    12. Xueping Zhu & Chi Zhang & Guangtao Fu & Yu Li & Wei Ding, 2017. "Bi-Level Optimization for Determining Operating Strategies for Inter-Basin Water Transfer-Supply Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4415-4432, November.
    13. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
    14. C. Audet & G. Savard & W. Zghal, 2007. "New Branch-and-Cut Algorithm for Bilevel Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 353-370, August.
    15. Cao, Dong & Chen, Mingyuan, 2006. "Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach," European Journal of Operational Research, Elsevier, vol. 169(1), pages 97-110, February.
    16. Lei Fang & Hecheng Li, 2013. "Lower bound of cost efficiency measure in DEA with incomplete price information," Journal of Productivity Analysis, Springer, vol. 40(2), pages 219-226, October.
    17. Sinha, Surabhi & Sinha, S. B., 2002. "KKT transformation approach for multi-objective multi-level linear programming problems," European Journal of Operational Research, Elsevier, vol. 143(1), pages 19-31, November.
    18. Ankhili, Z. & Mansouri, A., 2009. "An exact penalty on bilevel programs with linear vector optimization lower level," European Journal of Operational Research, Elsevier, vol. 197(1), pages 36-41, August.
    19. Dejana Zlatanović, 2015. "A Holistic Approach To Corporate Social Responsibility As A Prerequisite For Sustainable Development: Empirical Evidence," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 60(207), pages 69-94, September.
    20. Bhatt, Sneha Dhyani & Sinha, Ankur & Jayaswal, Sachin, 2024. "The capacitated r-hub interdiction problem with congestion: Models and solution approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:39:y:2011:i:1:p:33-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.