IDEAS home Printed from
   My bibliography  Save this article

Optimal adaptive generalized Polya urn design for multi-arm clinical trials


  • Yuan, Ao
  • Chai, Gen Xiang


A class of optimal adaptive multi-arm clinical trial designs is proposed based on an extended generalized Polya urn (GPU) model. The design is applicable to both the qualitative and quantitative responses and achieves, asymptotically, some pre-specified optimality criterion. Such criterion is specified by a functional of the response distributions and is implemented through the relationship between the design matrix and its first eigenvector. The asymptotic properties of the design are studied using the existing methods on GPU. Some examples for commonly used clinical designs are given as illustration.

Suggested Citation

  • Yuan, Ao & Chai, Gen Xiang, 2008. "Optimal adaptive generalized Polya urn design for multi-arm clinical trials," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 1-24, January.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:1-24

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Janson, Svante, 2004. "Functional limit theorems for multitype branching processes and generalized PĆ³lya urns," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 177-245, April.
    2. Bai, Z. D. & Hu, Feifang, 1999. "Asymptotic theorems for urn models with nonhomogeneous generating matrices," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 87-101, March.
    3. William F. Rosenberger & Nigel Stallard & Anastasia Ivanova & Cherice N. Harper & Michelle L. Ricks, 2001. "Optimal Adaptive Designs for Binary Response Trials," Biometrics, The International Biometric Society, vol. 57(3), pages 909-913, September.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:1-24. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.