IDEAS home Printed from
   My bibliography  Save this article

Algebraic Descriptions of Nominal Multivariate Discrete Data


  • Teugels, J. L.
  • Van Horebeek, J.


Traditionally, multivariate discrete data are analyzed by means of log-linear models. In this paper we show how an algebraic approach leads naturally to alternative models, parametrized in terms of the moments of the distribution. Moreover we derive a complete characterization of all meaningful transformations of the components and show how transformations affect the moments of a distribution. It turns out that our models provide the necessary formal description of longitudinal data; moreover in the classical case, they can be considered as an analysis tool, complementary to log-linear models.

Suggested Citation

  • Teugels, J. L. & Van Horebeek, J., 1998. "Algebraic Descriptions of Nominal Multivariate Discrete Data," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 203-226, November.
  • Handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:203-226

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Teugels, Jozef L, 1990. "Some representations of the multivariate Bernoulli and binomial distributions," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 256-268, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ip, Edward H. & Wang, Yuchung J. & Yeh, Yeong-nan, 2004. "Structural decompositions of multivariate distributions with applications in moment and cumulant," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 119-134, April.
    2. Jokinen, Jukka, 2006. "Fast estimation algorithm for likelihood-based analysis of repeated categorical responses," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1509-1522, December.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:203-226. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.