IDEAS home Printed from
   My bibliography  Save this article

On the Asymptotics of Quantizers in Two Dimensions


  • Su, Yingcai


When the mean square distortion measure is used, asymptotically optimal quantizers of uniform bivariate random vectors correspond to the centers of regular hexagons (Newman, 1982), and if the random vector is non-uniform, asymptotically optimal quantizers are the centers of piecewise regular hexagons where the sizes of the hexagons are determined by a properly chosen density function (Su and Cambanis, 1996). This paper considers bivariate random vectors with finite[gamma]th ([gamma]>0) moment. If the[gamma]th mean distortion measure is used, a complete characterization of the asymptotically optimal quantizers is given. Furthermore, it is shown that the procedure introduced by Su and Cambanis (1996) is also asymptotically optimal for every[gamma]>0. Examples with a normal distribution and a Pearson type VII distribution are considered.

Suggested Citation

  • Su, Yingcai, 1997. "On the Asymptotics of Quantizers in Two Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 67-85, April.
  • Handle: RePEc:eee:jmvana:v:61:y:1997:i:1:p:67-85

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Tarpey, T., 1995. "Principal Points and Self-Consistent Points of Symmetrical Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 53(1), pages 39-51, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Su, Yingcai, 1997. "Estimation of random fields by piecewise constant estimators," Stochastic Processes and their Applications, Elsevier, vol. 71(2), pages 145-163, November.
    2. Shun Matsuura & Hiroshi Kurata, 2014. "Principal points for an allometric extension model," Statistical Papers, Springer, vol. 55(3), pages 853-870, August.
    3. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    4. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:61:y:1997:i:1:p:67-85. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.