IDEAS home Printed from
   My bibliography  Save this article

Nonparametric Resampling for Homogeneous Strong Mixing Random Fields


  • Politis, D. N.
  • Romano, J. P.


Künsch (1989, Ann. Statist.17 1217-1241) and Liu ane Singh (1992, in Exploring Limits of Bootstrap (R. Le Page and L. Billard, Eds.), pp. 225-248, Wiley, New York) have recently introduced a block resampling method that is successful in deriving consistent bootstrap estimates of distribution and variance for the sample mean of a strong mixing sequence. Raïs and Moore (1990, in Interface '90) and Raïs (1992, Ph.D. Thesis, University of Montreal) extended the results of Künsch and Liu and Singh in the case of the sample mean of a homogeneous strong mixing random field in two dimensions (n = 2). In this paper, the general case (n [set membership, variant] Z+) is considered, and a resampling technique for strong mixing random fields is formulated, which is an extension of the "blocks of blocks" resampling scheme for sequences in Politis and Romano (1992, Ann. Statist.20 (4) 1985-2007). The "blocks of blocks" method can be used to construct asymptotically correct confidence intervals for parameters of the whole (infinite-dimensional) joint distribution of the random field, for example, the spectral density at a point. A variation of the "blocks of blocks" resampling scheme that involves "wrapping" the data around on a torus will also be studied, in view of its property to yield an unbiased bootstrap distribution.

Suggested Citation

  • Politis, D. N. & Romano, J. P., 1993. "Nonparametric Resampling for Homogeneous Strong Mixing Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 47(2), pages 301-328, November.
  • Handle: RePEc:eee:jmvana:v:47:y:1993:i:2:p:301-328

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Iranpanah, N. & Mohammadzadeh, M. & Taylor, C.C., 2011. "A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 578-587, January.
    2. Buhlmann, Peter & Kunsch, Hans R., 1999. "Block length selection in the bootstrap for time series," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 295-310, September.
    3. Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.
    4. Meyer, Marco & Jentsch, Carsten & Kreiss, Jens-Peter, 2015. "Baxter`s inequality and sieve bootstrap for random fields," Working Papers 15-06, University of Mannheim, Department of Economics.
    5. Jeremy T. Fox & Patrick Bajari, 2013. "Measuring the Efficiency of an FCC Spectrum Auction," American Economic Journal: Microeconomics, American Economic Association, vol. 5(1), pages 100-146, February.
    6. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
    7. Xianyang Zhang & Bo Li & Xiaofeng Shao, 2014. "Self-normalization for Spatial Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 311-324, June.
    8. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    9. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Srijan Sengupta & Xiaofeng Shao & Yingchuan Wang, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 315-326, May.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:47:y:1993:i:2:p:301-328. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.