IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v15y1984i3p279-294.html
   My bibliography  Save this article

On the convergence rate of maximal deviation distribution for kernel regression estimates

Author

Listed:
  • Konakov, V. D.
  • Piterbarg, V. I.

Abstract

Let (X, Y), X [set membership, variant] Rp, Y [set membership, variant] R1 have the regression function r(x) = E(Y|X = x). We consider the kernel nonparametric estimate rn(x) of r(x) and obtain a sequence of distribution functions approximating the distribution of the maximal deviation with power rate. It is shown that the distribution of the maximal deviation tends to double exponent (which is a conventional form of such theorems) with logarithmic rate and this rate cannot be improved.

Suggested Citation

  • Konakov, V. D. & Piterbarg, V. I., 1984. "On the convergence rate of maximal deviation distribution for kernel regression estimates," Journal of Multivariate Analysis, Elsevier, vol. 15(3), pages 279-294, December.
  • Handle: RePEc:eee:jmvana:v:15:y:1984:i:3:p:279-294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(84)90053-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-891, July.
    2. Andrews, Donald W. K., 1988. "Chi-square diagnostic tests for econometric models : Introduction and applications," Journal of Econometrics, Elsevier, vol. 37(1), pages 135-156, January.
    3. Andrews, Donald W K, 1988. "Chi-Square Diagnostic Tests for Econometric Models: Theory," Econometrica, Econometric Society, vol. 56(6), pages 1419-1453, November.
    4. Pollard, David, 1985. "New Ways to Prove Central Limit Theorems," Econometric Theory, Cambridge University Press, vol. 1(03), pages 295-313, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katharina Proksch, 2016. "On confidence bands for multivariate nonparametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 209-236, February.
    2. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers CWP44/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Paul Deheuvels & David Mason, 2004. "General Asymptotic Confidence Bands Based on Kernel-type Function Estimators," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 225-277, October.
    4. Mojirsheibani, Majid, 2012. "A weighted bootstrap approximation of the maximal deviation of kernel density estimates over general compact sets," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 230-241.
    5. Enno Mammen, "undated". "Comparing nonparametric versus parametric regression fits," Statistic und Oekonometrie 9205, Humboldt Universitaet Berlin.
    6. Rob Euwals & Bertrand Melenberg & Arthur van Soest, 1998. "Testing the predictive value of subjective labour supply data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(5), pages 567-585.
    7. Katharina Proksch, 2016. "On confidence bands for multivariate nonparametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 209-236, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:15:y:1984:i:3:p:279-294. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.