IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v136y2015icp126-146.html
   My bibliography  Save this article

Semi-parametric modeling of excesses above high multivariate thresholds with censored data

Author

Listed:
  • Sabourin, Anne

Abstract

How to include censored data in a statistical analysis is a recurrent issue in statistics. In multivariate extremes, the dependence structure of large observations can be characterized in terms of a non parametric angular measure, while marginal excesses above asymptotically large thresholds have a parametric distribution. In this work, a flexible semi-parametric Dirichlet mixture model for angular measures is adapted to the context of censored data and missing components. One major issue is to take into account censoring intervals overlapping the extremal threshold, without knowing whether the corresponding hidden data is actually extreme. Further, the censored likelihood needed for Bayesian inference has no analytic expression. The first issue is tackled using a Poisson process model for extremes, whereas a data augmentation scheme avoids multivariate integration of the Poisson process intensity over both the censored intervals and the failure region above threshold. The implemented MCMC algorithm allows simultaneous estimation of marginal and dependence parameters, so that all sources of uncertainty other than model bias are captured by posterior credible intervals. The method is illustrated on simulated and real data.

Suggested Citation

  • Sabourin, Anne, 2015. "Semi-parametric modeling of excesses above high multivariate thresholds with censored data," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 126-146.
  • Handle: RePEc:eee:jmvana:v:136:y:2015:i:c:p:126-146
    DOI: 10.1016/j.jmva.2015.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15000196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, J.H.J. & Segers, J.J.J., 2008. "Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution," Discussion Paper 2008-42, Tilburg University, Center for Economic Research.
    2. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    3. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    4. Guillotte, Simon & Perron, Francois & Segers, Johan, 2011. "Non-parametric Bayesian inference on bivariate extremes," LIDAM Reprints ISBA 2011011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. repec:awi:wpaper:0417 is not listed on IDEAS
    6. Sabourin, Anne & Naveau, Philippe, 2014. "Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 542-567.
    7. Einmahl, J.H.J. & de Haan, L.F.M. & Piterbarg, V.I., 2001. "Nonparametric estimation of the spectral measure of an extreme value distribution," Other publications TiSEM c3485b9b-a0bd-456f-9baa-0, Tilburg University, School of Economics and Management.
    8. Guadalupe Gómez & M. Calle & Ramon Oller, 2004. "Frequentist and Bayesian approaches for interval-censored data," Statistical Papers, Springer, vol. 45(2), pages 139-173, April.
    9. M.‐O. Boldi & A. C. Davison, 2007. "A mixture model for multivariate extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 217-229, April.
    10. Wendelin Schnedler, 2005. "Likelihood Estimation for Censored Random Vectors," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 195-217.
    11. Simon Guillotte & François Perron & Johan Segers, 2011. "Non‐parametric Bayesian inference on bivariate extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 377-406, June.
    12. Anne‐Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabourin, Anne & Naveau, Philippe, 2014. "Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 542-567.
    2. de Carvalho, Miguel & Oumow, Boris & Segers, Johan & WarchoÅ‚, MichaÅ‚, 2012. "A Euclidean likelihood estimator for bivariate tail dependence," LIDAM Discussion Papers ISBA 2012013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Khader Khadraoui & Pierre Ribereau, 2019. "Bayesian Inference with M-splines on Spectral Measure of Bivariate Extremes," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 765-788, September.
    4. Hanson, Timothy E. & de Carvalho, Miguel & Chen, Yuhui, 2017. "Bernstein polynomial angular densities of multivariate extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 60-66.
    5. Goix, Nicolas & Sabourin, Anne & Clémençon, Stephan, 2017. "Sparse representation of multivariate extremes with applications to anomaly detection," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 12-31.
    6. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    7. Padoan, Simone A., 2011. "Multivariate extreme models based on underlying skew-t and skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 977-991, May.
    8. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    9. Vettori, Sabrina & Huser, Raphael & Segers, Johan & Genton, Marc, 2017. "Bayesian Clustering and Dimension Reduction in Multivariate Extremes," LIDAM Discussion Papers ISBA 2017017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Lehtomaa, Jaakko & Resnick, Sidney I., 2020. "Asymptotic independence and support detection techniques for heavy-tailed multivariate data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 262-277.
    12. Rocco Roberto Cerchiara & Francesco Acri, 2020. "Estimating the Volatility of Non-Life Premium Risk Under Solvency II: Discussion of Danish Fire Insurance Data," Risks, MDPI, vol. 8(3), pages 1-19, July.
    13. Kiriliouk, Anna & Segers, Johan & Warchol, Michal, 2014. "Nonparametric estimation of extremal dependence," LIDAM Discussion Papers ISBA 2014044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Cui, Hengxin & Tan, Ken Seng & Yang, Fan & Zhou, Chen, 2022. "Asymptotic analysis of portfolio diversification," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 302-325.
    15. Segers, Johan, 2012. "Max-Stable Models For Multivariate Extremes," LIDAM Discussion Papers ISBA 2012011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Rocco Roberto Cerchiara & Francesco Acri, 2016. "Aggregate Loss Distribution And Dependence: Composite Models, Copula Functions And Fast Fourier Transform For The Danish Re Insurance Data," Working Papers 201608, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    17. Lee, J. & Fan, Y. & Sisson, S.A., 2015. "Bayesian threshold selection for extremal models using measures of surprise," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 84-99.
    18. Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
    19. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    20. Wendelin Schnedler & Nina Lucia Stephan, 2020. "Revisiting a Remedy Against Chains of Unkindness," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 72(3), pages 347-364, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:136:y:2015:i:c:p:126-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.