IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v6y2012i4p631-638.html
   My bibliography  Save this article

The citation-based indicator and combined impact indicator—New options for measuring impact

Author

Listed:
  • Zhou, Ping
  • Zhong, Yongfeng

Abstract

Metrics based on percentile ranks (PRs) for measuring scholarly impact involves complex treatment because of various defects such as overvaluing or devaluing an object caused by percentile ranking schemes, ignoring precise citation variation among those ranked next to each other, and inconsistency caused by additional papers or citations. These defects are especially obvious in a small-sized dataset. To avoid the complicated treatment of PRs based metrics, we propose two new indicators—the citation-based indicator (CBI) and the combined impact indicator (CII). Document types of publications are taken into account. With the two indicators, one would no more be bothered by complex issues encountered by PRs based indicators. For a small-sized dataset with less than 100 papers, special calculation is no more needed. The CBI is based solely on citation counts and the CII measures the integrate contributions of publications and citations. Both virtual and empirical data are used so as to compare the effect of related indicators. The CII and the PRs based indicator I3 are highly correlated but the former reflects citation impact more and the latter relates more to publications.

Suggested Citation

  • Zhou, Ping & Zhong, Yongfeng, 2012. "The citation-based indicator and combined impact indicator—New options for measuring impact," Journal of Informetrics, Elsevier, vol. 6(4), pages 631-638.
  • Handle: RePEc:eee:infome:v:6:y:2012:i:4:p:631-638
    DOI: 10.1016/j.joi.2012.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S175115771200051X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2012.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan Adams & Karen Gurney & Stuart Marshall, 2007. "Profiling citation impact: A new methodology," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(2), pages 325-344, August.
    2. Loet Leydesdorff & Lutz Bornmann & Rüdiger Mutz & Tobias Opthof, 2011. "Turning the tables on citation analysis one more time: Principles for comparing sets of documents," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(7), pages 1370-1381, July.
    3. E. Garfield & I. H. Sher, 1963. "New factors in the evaluation of scientific literature through citation indexing," American Documentation, Wiley Blackwell, vol. 14(3), pages 195-201, July.
    4. Lundberg, Jonas, 2007. "Lifting the crown—citation z-score," Journal of Informetrics, Elsevier, vol. 1(2), pages 145-154.
    5. Ronald Rousseau, 2012. "Basic properties of both percentile rank scores and the I3 indicator," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(2), pages 416-420, February.
    6. Michael Schreiber, 2012. "Inconsistencies of recently proposed citation impact indicators and how to avoid them," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(10), pages 2062-2073, October.
    7. Loet Leydesdorff & Lutz Bornmann, 2011. "Integrated impact indicators compared with impact factors: An alternative research design with policy implications," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(11), pages 2133-2146, November.
    8. Opthof, Tobias & Leydesdorff, Loet, 2010. "Caveats for the journal and field normalizations in the CWTS (“Leiden”) evaluations of research performance," Journal of Informetrics, Elsevier, vol. 4(3), pages 423-430.
    9. van Raan, Anthony F.J. & van Leeuwen, Thed N. & Visser, Martijn S. & van Eck, Nees Jan & Waltman, Ludo, 2010. "Rivals for the crown: Reply to Opthof and Leydesdorff," Journal of Informetrics, Elsevier, vol. 4(3), pages 431-435.
    10. Anthony F. J. Raan, 2006. "Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 67(3), pages 491-502, June.
    11. Michael Schreiber, 2012. "Inconsistencies of recently proposed citation impact indicators and how to avoid them," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(10), pages 2062-2073, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Meiqian & Guo, Zhaoxia & Dong, Yucheng & Chiclana, Francisco & Herrera-Viedma, Enrique, 2021. "Citations optimal growth path: A tool to analyze sensitivity to citations of h-like indexes," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Ping Zhou & Yongfeng Zhong & Meigen Yu, 2013. "A bibliometric investigation on China–UK collaboration in food and agriculture," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 267-285, November.
    3. Wang, Xing, 2024. "The misuse of the nonlinear field normalization method: Nonlinear field normalization citation counts at the paper level should not be added or averaged," Journal of Informetrics, Elsevier, vol. 18(3).
    4. Liping Yu & Houqiang Yu, 2016. "Does the average JIF percentile make a difference?," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1979-1987, December.
    5. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2013. "Which percentile-based approach should be preferred for calculating normalized citation impact values? An empirical comparison of five approaches including a newly developed citation-rank approach (P1," Journal of Informetrics, Elsevier, vol. 7(4), pages 933-944.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bornmann, Lutz & Leydesdorff, Loet & Wang, Jian, 2013. "Which percentile-based approach should be preferred for calculating normalized citation impact values? An empirical comparison of five approaches including a newly developed citation-rank approach (P1," Journal of Informetrics, Elsevier, vol. 7(4), pages 933-944.
    2. Ludo Waltman & Michael Schreiber, 2013. "On the calculation of percentile-based bibliometric indicators," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(2), pages 372-379, February.
    3. Albarrán, Pedro & Herrero, Carmen & Ruiz-Castillo, Javier & Villar, Antonio, 2017. "The Herrero-Villar approach to citation impact," Journal of Informetrics, Elsevier, vol. 11(2), pages 625-640.
    4. Lutz Bornmann & Alexander Tekles & Loet Leydesdorff, 2019. "How well does I3 perform for impact measurement compared to other bibliometric indicators? The convergent validity of several (field-normalized) indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1187-1205, May.
    5. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    6. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    7. Loet Leydesdorff, 2012. "Alternatives to the journal impact factor: I3 and the top-10% (or top-25%?) of the most-highly cited papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 355-365, August.
    8. Bornmann, Lutz & Leydesdorff, Loet & Mutz, Rüdiger, 2013. "The use of percentiles and percentile rank classes in the analysis of bibliometric data: Opportunities and limits," Journal of Informetrics, Elsevier, vol. 7(1), pages 158-165.
    9. Gangan Prathap, 2012. "The quality-quantity-quasity and energy-exergy-entropy exegesis of expected value calculation of citation performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 269-275, April.
    10. Bouyssou, Denis & Marchant, Thierry, 2016. "Ranking authors using fractional counting of citations: An axiomatic approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 183-199.
    11. Schreiber, Michael, 2014. "How to improve the outcome of performance evaluations in terms of percentiles for citation frequencies of my papers," Journal of Informetrics, Elsevier, vol. 8(4), pages 873-879.
    12. Michael Schreiber, 2013. "How much do different ways of calculating percentiles influence the derived performance indicators? A case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 821-829, December.
    13. Brito, Ricardo & Rodríguez-Navarro, Alonso, 2018. "Research assessment by percentile-based double rank analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 315-329.
    14. Loet Leydesdorff, 2013. "An evaluation of impacts in “Nanoscience & nanotechnology”: steps towards standards for citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 35-55, January.
    15. Schneider, Jesper W., 2013. "Caveats for using statistical significance tests in research assessments," Journal of Informetrics, Elsevier, vol. 7(1), pages 50-62.
    16. Loet Leydesdorff & Tobias Opthof, 2012. "A rejoinder on energy versus impact indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 745-748, February.
    17. Wolfgang Glänzel & Henk F. Moed, 2013. "Opinion paper: thoughts and facts on bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 381-394, July.
    18. Gangan Prathap, 2012. "Energy indicators and percentile ranking normalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 997-1003, June.
    19. Larivière, Vincent & Gingras, Yves, 2011. "Averages of ratios vs. ratios of averages: An empirical analysis of four levels of aggregation," Journal of Informetrics, Elsevier, vol. 5(3), pages 392-399.
    20. Mingers, John & Yang, Liying, 2017. "Evaluating journal quality: A review of journal citation indicators and ranking in business and management," European Journal of Operational Research, Elsevier, vol. 257(1), pages 323-337.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:6:y:2012:i:4:p:631-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.